Search results

1 – 10 of 35
Article
Publication date: 15 November 2011

S. Bausson, V. Thomas, P.‐Y. Joubert, L. Blanc‐Féraud, J. Darbon and G. Aubert

The inverse problem in the eddy current (EC) imaging of metallic parts is an ill‐posed problem. The purpose of the paper is to compare the performances of regularized algorithms…

Abstract

Purpose

The inverse problem in the eddy current (EC) imaging of metallic parts is an ill‐posed problem. The purpose of the paper is to compare the performances of regularized algorithms to estimate the 3D geometry of a surface breaking defect.

Design/methodology/approach

The forward problem is solved using a mesh‐free semi‐analytical model, the distributed point source method, which allows EC data to be simulated according to the shape of the considered defect. The inverse problem is solved using two regularization methods, namely the Tikhonov (l2) and the 3D total variation (tv) methods, implemented with first‐ and second‐order algorithms. The inversion performances were evaluated in terms of both mean square error (MSE) and computation time, while considering additive white and colored noise, respectively, standing for acquisition errors and model errors.

Findings

In presence of colored noise, the authors found out that first‐ and second‐order methods provide approximately the same result according to the SEs obtained while estimating the defect voxels. Nevertheless, in comparison with (l2), the (tv) regularization was proved to decrease the MSE by 10 voxels, at the cost of less than twice the computational effort.

Originality/value

In this paper, an easy to implement mesh‐free model, based on virtual defect current sources, was used to generated EC data relative to a defect positioned at the surface of a metallic part. A 3D total variation regularization approach was used in combination with the proposed model, which appears to be well suited to the reconstruction of volumic defects.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 October 2018

F. Li, M. Soleimani and J. Abascal

Magnetic induction tomography (MIT) is a tomographic imaging technique with a wide range of potential industrial applications. Planar array MIT is a convenient setup but unable to…

Abstract

Purpose

Magnetic induction tomography (MIT) is a tomographic imaging technique with a wide range of potential industrial applications. Planar array MIT is a convenient setup but unable to access freely from the entire periphery as it only collects measurements from one surface, so it remains challenging given the limited data. This study aims to assess the use of sparse regularization methods for accurate position and depth detection in planar array MIT.

Design/methodology/approach

The most difficult challenges in MIT are to solve the inverse and forward problems. The inversion of planar MIT is severely ill-posed due to limited access data. Thus, this paper posed a total variation (TV) problem and solved it efficiently with the Split Bregman formulation to overcome this difficulty. Both isotropic and anisotropic TV formulations are compared to Tikhonov regularization with experimental MIT data.

Findings

The results show that Tikhonov method failed or underestimated the object position and depth. Both isotropic and anisotropic TV led to accurate recovery of depth and position.

Originality/value

There are numerous potential applications for planar array MIT where access to the materials under testing is restrict. Sparse regularization methods are a promising approach to improving depth detection for limited MIT data.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 September 2016

Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…

1202

Abstract

Purpose

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.

Design/methodology/approach

In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.

Findings

This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.

Originality/value

The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.

Article
Publication date: 1 April 1995

Lorraine G. Olson and Robert D. Throne

We compare a recently proposed generalized eigensystem approach and anew modified generalized eigensystem approach to more widely used truncatedsingular value decomposition and

Abstract

We compare a recently proposed generalized eigensystem approach and a new modified generalized eigensystem approach to more widely used truncated singular value decomposition and zero‐order Tikhonov regularization for solving multidimensional elliptic inverse problems. As a test case, we use a finite element representation of a homogeneous eccentric spheres model of the inverse problem of electrocardiography. Special attention is paid to numerical issues of accuracy, convergence, and robustness. While the new generalized eigensystem methods are substantially more demanding computationally, they exhibit improved accuracy and convergence compared with widely used methods and offer substantially better robustness.

Details

Engineering Computations, vol. 12 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2019

Jinlong Dong, Luca Di Rienzo, Olivier Chadebec and Jianhua Wang

This paper aims to present the mathematical formulations of a magnetic inverse problem for the electric arc current density reconstruction in a simplified arc chamber of a…

Abstract

Purpose

This paper aims to present the mathematical formulations of a magnetic inverse problem for the electric arc current density reconstruction in a simplified arc chamber of a low-voltage circuit breaker.

Design/methodology/approach

Considering that electric arc current density is a zero divergence vector field, the inverse problem can be solved in Whitney space W2 in terms of electric current density J with the zero divergence condition as a constraint or can be solved in Whitney space W1 in terms of electric vector potential T where the zero divergence condition naturally holds. Moreover, the tree gauging condition is applied to ensure a unique solution when solving for the vector potential in space W1. Tikhonov regularization is used to treat the ill-posedness of the inverse problem complemented with L-curve method for the selection of regularization parameters. A common mode approach is proposed, which solves for the reduced electric vector potential representing the internal current loops instead of solving for the total electric vector potential. The proposed inversion approaches are numerically tested starting from simulated magnetic field values.

Findings

With the common mode approach, the reconstruction of current density is significantly improved for both formulations using face elements in space W2 and using edge elements in space W1. When solving the inverse problem in space W1, the choice of the regularization operator has a key role to obtain a good reconstruction, where the discrete curl operator is a good option. The standard Tikhonov regularization obtains a good reconstruction with J-formulation, but fails in the case of T-formulation. The use of edge elements requires a tree-cotree gauging to ensure the uniqueness of T. Moreover, additional efforts have to be taken to find an optimal regularization operator and an optimal tree when using edge elements. In conclusion, the J-formulation is to be preferred.

Originality/value

The proposed approaches are able to reconstruct the three-dimensional electric arc current density from its magnetic field in a non-intrusive manner. The formulations enable us to incorporate a priori knowledge of the unknown current density into the solution of the inverse problem, including the zero divergence condition and the boundary conditions. A common mode approach is proposed, which can significantly improve the current density reconstruction.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 January 2023

Zhenjun Li and Chunyu Zhao

This paper aims to discuss the inverse problems that arise in various practical heat transfer processes. The purpose of this paper is to provide an identification method for…

Abstract

Purpose

This paper aims to discuss the inverse problems that arise in various practical heat transfer processes. The purpose of this paper is to provide an identification method for predicting the internal boundary conditions for thermal analysis of mechanical structure. A few examples of heat transfer systems are given to illustrate the applicability of the method and the challenges that must be addressed in solving the inverse problem.

Design/methodology/approach

In this paper, the thermal network method and the finite difference method are used to model the two-dimensional heat conduction inverse problem of the tube structure, and the heat balance equation is arranged into an explicit form for heat load prediction. To solve the matrix ill-conditioned problem in the process of solving the inverse problem, a Tikhonov regularization parameter selection method based on the inverse computation-contrast-adjustment-approach was proposed.

Findings

The applicability of the proposed method is illustrated by numerical examples for different dynamically varying heat source functions. It is proved that the method can predict dynamic heat source with different complexity.

Practical implications

The modeling calculation method described in this paper can be used to predict the boundary conditions for the inner wall of the heat transfer tube, where the temperature sensor cannot be placed.

Originality/value

This paper presents a general method for the direct prediction of heat sources or boundary conditions in mechanical structure. It can directly obtain the time-varying heat flux load and thtemperature field of the machine structure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2001

P. Wach, R. Modre, B. Tilg and G. Fischer

A promising approach for the solution of the electrocardiographic inverse problem is the calculation of the cardiac activation sequence from body surface potential (BSP) mapping…

Abstract

A promising approach for the solution of the electrocardiographic inverse problem is the calculation of the cardiac activation sequence from body surface potential (BSP) mapping data. Here, a two‐fold regularization scheme is applied in order to stabilize the inverse solution of this intrinsically ill‐posed problem. The solution of the inverse problem is defined by the minimum of a non‐linear cost function. The L‐curve method can be applied for regularization parameter determination. Solving the optimization problem by a Newton‐like method, the L‐curve may be of pronged shape. Then a numerically unique determination of the optimal regularization parameter will become difficult. This problem can be avoided applying an iterative linearized algorithm. It is shown that activation time imaging due to temporal and spatial regularization is stable with respect to large model errors. Even neglecting cardiac anisotropy in activation time imaging results in an acceptable inverse solution.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 13 December 2022

Marcelo Colaço, Fabio Bozzoli, Luca Cattani and Luca Pagliarini

The purpose of this paper is to apply the conjugate gradient (CG) method, together with the adjoint operator (AO) to the pulsating heat pipe problem, including some quite…

379

Abstract

Purpose

The purpose of this paper is to apply the conjugate gradient (CG) method, together with the adjoint operator (AO) to the pulsating heat pipe problem, including some quite interesting experimental results. The CG method, together with the AO, was able to estimate the unknown functions more efficiently than the other techniques presented in this paper. The estimation of local heat transfer coefficients, rather than the global ones, in pulsating heat pipes is a relatively new subject and presenting a robust, efficient and self-regularized inverse tool to estimate it, supported also by some experimental results, is the main purpose of this paper. To also increase the visibility and the general use of the paper to the heat transfer community, the authors include, as supplemental material, all numerical and experimental data used in this paper.

Design/methodology/approach

The approach was established on the solution of the inverse heat conduction problem in the wall by using as starting data the temperature measurements on the outer surface. The procedure is based on the CG method with AO. The here proposed approach was first verified adopting synthetic data and then it was validated with real cases regarding pulsating heat pipes.

Findings

An original fast methodology to estimate local convective heat flux is proposed. The procedure has been validated both numerically and experimentally. The procedure has been compared to other classical methods presenting some peculiar benefits.

Practical implications

The approach is suitable for pulsating heat pipes performance evaluation because these devices present a local heat flux distribution characterized by an important variation both in time and in space as a result of the complex flow patterns that are generated in this type of devices.

Originality/value

The procedure here proposed shows these benefits: it affords a general model of the heat conduction problem that is effortlessly customized for the particular case, it can be applied also to large datasets and it presents reduced computational expense.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 October 2018

Tomasz Rymarczyk, Jan Sikora and Paweł Tchórzewski

The paper aims to present an innovative solution for evaluation study of the dampness level of walls and historical buildings.

Abstract

Purpose

The paper aims to present an innovative solution for evaluation study of the dampness level of walls and historical buildings.

Design/methodology/approach

Electrical tomography enables one to obtain a distribution pattern of wall dampness. The application of modern tomographic techniques in conjunction with topological algorithms will allow one to perform very accurate spatial assessment of the dampness levels of buildings. The proposed application uses the total variation, Gauss–Newton and level set method to solve the inverse problem in electrical tomography.

Findings

Research shows that electrical tomography can provide effective results in damp buildings. This method can provide 2D/3D moisture distribution pattern.

Research limitations/implications

The impact of this technique will be limited to inspection of the facility after floods or assessment of historical buildings.

Practical implications

The presented method could eventually lead to a much more effective evaluation of moisture in the walls.

Social implications

The solution has commercial potential and could result in more cost-effective monitoring of historical buildings, which have an economic impact on society.

Originality/value

The authors propose a system for imaging spatial moistness of walls and historic buildings based on electrical tomography and consisting of a measuring device, sensors and image reconstruction algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 24 October 2021

Piergiorgio Alotto, Paolo Di Barba, Alessandro Formisano, Gabriele Maria Lozito, Raffaele Martone, Maria Evelina Mognaschi, Maurizio Repetto, Alessandro Salvini and Antonio Savini

Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical…

Abstract

Purpose

Inverse problems in electromagnetism, namely, the recovery of sources (currents or charges) or system data from measured effects, are usually ill-posed or, in the numerical formulation, ill-conditioned and require suitable regularization to provide meaningful results. To test new regularization methods, there is the need of benchmark problems, which numerical properties and solutions should be well known. Hence, this study aims to define a benchmark problem, suitable to test new regularization approaches and solves with different methods.

Design/methodology/approach

To assess reliability and performance of different solving strategies for inverse source problems, a benchmark problem of current synthesis is defined and solved by means of several regularization methods in a comparative way; subsequently, an approach in terms of an artificial neural network (ANN) is considered as a viable alternative to classical regularization schemes. The solution of the underlying forward problem is based on a finite element analysis.

Findings

The paper provides a very detailed analysis of the proposed inverse problem in terms of numerical properties of the lead field matrix. The solutions found by different regularization approaches and an ANN method are provided, showing the performance of the applied methods and the numerical issues of the benchmark problem.

Originality/value

The value of the paper is to provide the numerical characteristics and issues of the proposed benchmark problem in a comprehensive way, by means of a wide variety of regularization methods and an ANN approach.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 35