Search results

1 – 10 of 115
Open Access
Article
Publication date: 7 June 2021

Changyang Li, Huapeng Wu, Harri Eskelinen and Haibiao Ji

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in…

Abstract

Purpose

This paper aims to present a detailed mechanical design of a seven-degrees-of-freedom mobile parallel robot for the tungsten inert gas (TIG) welding and machining processes in fusion reactor. Detailed mechanical design of the robot is presented and both the kinematic and dynamic behaviors are studied.

Design/methodology/approach

First, the model of the mobile parallel robot was created in computer-aided design (CAD) software, then the simulation and optimization of the robot were completed to meet the design requirements. Then the robot was manufactured and assembled. Finally, the machining and tungsten inert gas (TIG) welding tests were performed for validation.

Findings

Currently, the implementation of the robot system has been successfully carried out in the laboratory. The excellent performance has indicated that the robot’s mechanical and software designs are suitable for the given tasks. The quality and accuracy of welding and machining has reached the requirements.

Originality/value

This mobile parallel industrial robot is particularly used in fusion reactor. Furthermore, the structure of the mobile parallel robot can be optimized for different applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 December 2000

Jon Rigelsford

244

Abstract

Details

Industrial Robot: An International Journal, vol. 27 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1076

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Content available

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 71 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 31 July 2019

Yitao Pan, Yuan Chen and Lin Li

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s…

1184

Abstract

Purpose

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s athletic ability, load capacity and rigidity, and to ensure the coordination of multi-modal motion.

Design/methodology/approach

First, based on the rotation transformation matrix and closed-loop constraint equation of the parallel trunk joint mechanism, the mathematical model of its inverse position solution is constructed. Then, the Jacobian matrix of velocity and acceleration is derived by time derivative method. On this basis, the stiffness matrix of the parallel trunk joint mechanism is derived on the basis of the principle of virtual work and combined with the deformation effect of the rope driving pair and the spring elastic restraint pair. Then, the eigenvalue distribution of the stiffness matrix and the global stiffness performance index are used as the stiffness evaluation index of the mechanism. In addition, the performance index of athletic dexterity is analyzed. Finally, the distribution map of kinematic dexterity and stiffness is drawn in the workspace by numerical simulation, and the influence of the introduced spring on the stiffness distribution of the parallel trunk joint mechanism is compared and analyzed. It is concluded that the stiffness in the specific direction of the parallel trunk joint mechanism can be improved, and the stiffness distribution can be improved by adjusting the spring elastic structure parameters of the rope-driven branch chain.

Findings

Studies have shown that the wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring has a great kinematic dexterity, load-carrying capacity and stiffness performance.

Research limitations/implications

The soft-mixed structure is not mature, and there are few new materials for the soft-mixed mixture; the rope and the rigid structure are driven together with a large amount of friction and hindrance factors, etc.

Practical implications

It ensures that the multi-motion mode hexapod mobile robot can meet the requirement of sufficient different stiffness for different motion postures through the parallel trunk joint mechanism, and it ensures that the multi-motion mode hexapod mobile robot in multi-motion mode can meet the performance requirement of global stiffness change at different pose points of different motion postures through the parallel trunk joint mechanism.

Social implications

The trunk structure is a very critical mechanism for animals. Animals in the movement to achieve smooth climbing, overturning and other different postures, such as centipede, starfish, giant salamander and other multi-legged animals, not only rely on the unique leg mechanism, but also must have a unique trunk joint mechanism. Based on the cooperation of these two mechanisms, the animal can achieve a stable, flexible and flexible variety of motion characteristics. Therefore, the trunk joint mechanism has an important significance for the coordinated movement of the whole body of the multi-sport mode mobile robot (Huang Hu-lin, 2016).

Originality/value

In this paper, based on the idea of combining rigid parallel mechanism with wire-driven mechanism, a trunk mechanism is designed, which is composed of four spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism in series. Its spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism can make the multi-motion mode mobile robot have better load capacity, mobility and stiffness performance (Qi-zhi et al., 2018; Cong-hao et al., 2018), thus improving the environmental adaptability and reliability of the multi-motion mode mobile robot.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 6 December 2022

Peiqing Li, Taiping Yang, Hao Zhang, Lijun Wang and Qipeng Li

This paper aimed a fractional-order sliding mode-based lateral lane-change control method that was proposed to improve the path-tracking accuracy of vehicle lateral motion.

483

Abstract

Purpose

This paper aimed a fractional-order sliding mode-based lateral lane-change control method that was proposed to improve the path-tracking accuracy of vehicle lateral motion.

Design/methodology/approach

In this paper the vehicle presighting and kinematic models were established, and a new sliding mode control isokinetic convergence law was devised based on the fractional order calculus to make the front wheel turning angle approach the desired value quickly. On this basis, a fractional gradient descent algorithm was proposed to adjust the radial basis function (RBF) neuron parameter update rules to improve the compensation speed of the neural network.

Findings

The simulation results revealed that, compared to the traditional sliding mode control strategy, the designed controller eliminated the jitter of the sliding mode control, sped up the response of the controller, reduced the overshoot of the system parameters and facilitated accurate and fast tracking of the desired path when the vehicle changed lanes at low speeds.

Originality/value

This paper combines the idea of fractional order calculus with gradient descent algorithm, proposed a fractional-order gradient descent method applied to RBF neural network and fast adjustment the position and width of neurons.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Content available
Article
Publication date: 1 February 2000

69

Abstract

Details

Industrial Robot: An International Journal, vol. 27 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 12 July 2022

Nianfei Gan, Miaomiao Zhang, Bing Zhou, Tian Chai, Xiaojian Wu and Yougang Bian

The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.

Abstract

Purpose

The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.

Design/methodology/approach

To deal with dynamic obstacles for autonomous vehicles during parking, a long- and short-term mixed trajectory planning algorithm is proposed in this paper. In long term, considering obstacle behavior, A-star algorithm was improved by RS curve and potential function via spatio-temporal map to obtain a safe and efficient initial trajectory. In short term, this paper proposes a nonlinear model predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model. Moreover, the proposed method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver.

Findings

Compared with the spline optimization method, the results show that the proposed method can generate efficient obstacle avoidance strategies, safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units.

Originality/value

It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a dynamic environment.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 24 September 2019

Jing Bai, Le Fan, Shuyang Zhang, Zengcui Wang and Xiansheng Qin

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and…

4667

Abstract

Purpose

Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated industrial robot. This paper aims to enhance it and improve the applicability in the field of flexible assembling processing and parts fabrication by developing a more practical parameter identification model.

Design/methodology/approach

The model is developed by considering both geometric parameters and joint stiffness; geometric parameters contain 27 parameters and the parallelism problem between axes 2 and 3 is involved by introducing a new parameter. The joint stiffness, as the non-geometric parameter considered in this paper, is considered by regarding the industrial robot as a rigid linkage and flexible joint model and adds six parameters. The model is formulated as the form of error via linearization.

Findings

The performance of the proposed model is validated by an experiment which is developed on KUKA KR500-3 robot. An experiment is implemented by measuring 20 positions in the work space of this robot, obtaining least-square solution of measured positions by the software MATLAB and comparing the result with the solution without considering joint stiffness. It illustrates that the identification model considering both joint stiffness and geometric parameters can modify the theoretical position of robots more accurately, where the error is within 0.5 mm in this case, and the volatility is also reduced.

Originality/value

A new parameter identification model is proposed and verified. According to the experimental result, the absolute positional accuracy can be remarkably enhanced and the stability of the results can be improved, which provide more accurate parameter identification for calibration and further application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 February 2002

John Rigelsford

128

Abstract

Details

Industrial Robot: An International Journal, vol. 29 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 115