Search results

1 – 10 of over 6000
Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research…

1195

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 July 2023

Kento Nakatsuru, Weiwei Wan and Kensuke Harada

This paper aims to study using a mobile manipulator with a collaborative robotic arm component to manipulate objects beyond the robot’s maximum payload.

Abstract

Purpose

This paper aims to study using a mobile manipulator with a collaborative robotic arm component to manipulate objects beyond the robot’s maximum payload.

Design/methodology/approach

This paper proposes a single-short probabilistic roadmap-based method to plan and optimize manipulation motion with environment support. The method uses an expanded object mesh model to examine contact and randomly explores object motion while keeping contact and securing affordable grasping force. It generates robotic motion trajectories after obtaining object motion using an optimization-based algorithm. With the proposed method’s help, the authors plan contact-rich manipulation without particularly analyzing an object’s contact modes and their transitions. The planner and optimizer determine them automatically.

Findings

The authors conducted experiments and analyses using simulations and real-world executions to examine the method’s performance. The method successfully found manipulation motion that met contact, force and kinematic constraints. It allowed a mobile manipulator to move heavy objects while leveraging supporting forces from environmental obstacles.

Originality/value

This paper presents an automatic approach for solving contact-rich heavy object manipulation problems. Unlike previous methods, the new approach does not need to explicitly analyze contact states and build contact transition graphs, thus providing a new view for robotic grasp-less manipulation, nonprehensile manipulation, manipulation with contact, etc.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 2 March 2012

Yongqiang Xiao, Zhijiang Du and Wei Dong

The purpose of this paper is to propose a new smooth online near time‐optimal trajectory planning approach to reduce the consuming time compared to the conventional dynamics…

1184

Abstract

Purpose

The purpose of this paper is to propose a new smooth online near time‐optimal trajectory planning approach to reduce the consuming time compared to the conventional dynamics trajectory planning methods.

Design/methodology/approach

In the proposed method, the robot path is expressed by a scalar path coordinate. The joints torque boundary and speed boundary are transformed into the plane, which can generate the limitation curves of pseudo‐velocity. The maximum pseudo‐velocity curve that meets the limits of torque and speed is built up through the feature points and control points in the plane by using cubic polynomial fitting method. Control points used for cubic polynomial construction are optimized by the Golden‐Section method.

Findings

The proposed method can avoid Range's phenomenon and also guarantee the continuity of torque.

Practical implications

The algorithm designed in this paper is used for the controller of a new industrial robot which will be equipped for the welding automatic lines of Chery Automobile Co. Ltd.

Originality/value

Compared to the five‐order polynomial trajectory optimization method proposed by Macfarlane and Croft, the approach described in this paper can effectively take advantage of joints maximum speed, and the calculation time of this method is shorter than conventional dynamics methods.

Details

Industrial Robot: An International Journal, vol. 39 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 October 2018

Fabian Andres Lara-Molina, Didier Dumur and Karina Assolari Takano

This paper aims to present the optimal design procedure of a symmetrical 2-DOF parallel planar robot with flexible joints by considering several performance criteria based on the…

Abstract

Purpose

This paper aims to present the optimal design procedure of a symmetrical 2-DOF parallel planar robot with flexible joints by considering several performance criteria based on the workspace size, dynamic dexterity and energy of the control.

Design/methodology/approach

Consequently, the optimal design consists in determining the dimensional parameters to maximize the size of the workspace, maximize the dynamic dexterity and minimize the energy of the control action. The design criteria are derived from the kinematics, dynamics, elastodynamics and the position control law of the robot. The analysis of the design criteria is performed by means of the design space and atlases.

Findings

Finally, the multi-objective design optimization derived from the optimal design procedure is solved by using multi-objective genetic algorithms, and the results are analyzed to assess the validity of the proposed approach.

Originality/value

An alternative approach to the design of a planar parallel robot with flexible joints that permits determining the structural parameters by considering kinematic, dynamic and control operational performance.

Details

Engineering Computations, vol. 35 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 December 2022

Chunming Tong, Zhenbao Liu, Wen Zhao, Baodong Wang, Yao Cheng and Jingyan Wang

This paper aims to propose an online local trajectory planner for safe and fast trajectory generation that combines the jerk-limited trajectory (JLT) generation algorithm and the…

Abstract

Purpose

This paper aims to propose an online local trajectory planner for safe and fast trajectory generation that combines the jerk-limited trajectory (JLT) generation algorithm and the particle swarm optimization (PSO) algorithm. A trajectory switching algorithm is proposed to improve the trajectory tracking performance. The proposed system generates smooth and safe flight trajectories online for quadrotors.

Design/methodology/approach

First, the PSO algorithm method can obtain the optimal set of target points near the path points obtained by the global path searching. The JLT generation algorithm generates multiple trajectories from the current position to the target points that conform to the kinetic constraints. Then, the generated multiple trajectories are evaluated to pick the obstacle-free trajectory with the least cost. A trajectory switching strategy is proposed to switch the unmanned aerial vehicle (UAV) to a new trajectory before the UAV reaches the last hovering state of the current trajectory, so that the UAV can fly smoothly and quickly.

Findings

The feasibility of the designed system is validated through online flight experiments in indoor environments with obstacles.

Practical implications

The proposed trajectory planning system is integrated into a quadrotor platform. It is easily implementable onboard and computationally efficient.

Originality/value

The proposed local planner for trajectory generation and evaluation combines PSO and JLT generation algorithms. The proposed method can provide a collision-free and continuous trajectory, significantly reducing the required computing resources. The PSO algorithm locally searches for feasible target points near the global waypoint obtained by the global path search. The JLT generation algorithm generates trajectories from the current state toward each point contained by the target point set. The proposed trajectory switching strategy can avoid unnecessary hovering states in flight and ensure a continuous and safe flight trajectory. It is especially suitable for micro quadrotors with a small payload and limited onboard computing power.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 December 2019

Fei Guo, Shoukun Wang, Junzheng Wang and Huan Yu

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse…

Abstract

Purpose

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse rough three-dimensional (3-D) terrain.

Design/methodology/approach

Presented is a novel wheel-quadruped mobile robot with parallel driving mechanisms and based on the Stewart six degrees of freedom (6-DOF) platform. The task for traversing rough terrain is decomposed into two prospects: one is the configuration selection in terms of a local foothold cost map, in which the kinematic feasibility of parallel mechanism and terrain features are satisfied in heuristic search planning, and the other one is a whole-body controller to complete smooth and continuous motion transitions.

Findings

A fan-shaped foot search region focuses on footholds with a strong possibility of becoming foot placement, simplifying computation complexity. A receding horizon avoids kinematic deadlock during the search process and improves robot adaptation.

Research limitations/implications

Both simulation and experimental results validated the proposed scenario available and appropriate for quadruped locomotion to traverse challenging 3-D terrains.

Originality/value

This paper analyzes kinematic workspace for a parallel robot with 6-DOF Stewart mechanism on both body and foot. A fan-shaped foot search region enhances computation efficiency. Receding horizon broadens the preview search to decrease the possibility of deadlock minima resulting from terrain variation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 31 May 2022

Junlin Cheng, Peiyu Ma, Qiang Ruan, Yezhuo Li and Qianqian Zhang

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two…

Abstract

Purpose

The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two switchable working modes which can be used to traverse different terrains or climb over obstacles.

Design/methodology/approach

The main body of the DQMM is composed of a double four-link mechanism which sharing a public link and two symmetrical steering platforms which placed at both ends of the four-link mechanism. The steering platforms give the DQMM not only steering ability but also reconnaissance ability which can be achieved by carrying sensors such as cameras on steering platforms. By controlling the deformation of the DQMM, it can switch between two working modes (tracked rolling mode and obstacle-climbing mode) to achieve the functions of rolling and obstacle-climbing. Dynamic simulation model was established to verify the feasibility.

Findings

Based on the kinematics analysis and simulation results of the DQMM, its moving function is realized by the tracked rolling mode, and the obstacle-climbing mode is used to climb over obstacles in structured terrains such as continuous stairs. The feasibility of the two working modes is verified on a physical prototype.

Originality/value

The work of this paper is a new exploration of applying “overall closed moving linkages mechanism” to the area of small mobile mechanisms. The adaptability of different terrains and the ability of obstacle-climbing are improved by the combination of multi-modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 February 2022

Changlong Ye, Yingxin Sun, Suyang Yu, Jian Ding and Chunying Jiang

The mechanical properties between wheel and ground will affect the motion performance of wheeled omnidirectional mobile robot (OMR). MY3 wheel is an omnidirectional wheel. This…

Abstract

Purpose

The mechanical properties between wheel and ground will affect the motion performance of wheeled omnidirectional mobile robot (OMR). MY3 wheel is an omnidirectional wheel. This paper aims to analyze the contact mechanical characteristics between MY3 wheel and ground to improve the motion accuracy of an omnidirectional mobile platform with MY3 wheel (MY3-OMR).

Design/methodology/approach

This method takes MY3 wheel as the research objective. The normal and tangential contact mechanics model and rolling contact mechanics model of MY3 wheel are established by analyzing the structure of MY3 wheel, and thereby, the slip ratio of MY3 wheel in the process of motion is calculated. The kinematics model of MY3-OMR is optimized by taking the slip ratio as the optimization parameter that aims to improve motion accuracy of MY3-OMR.

Findings

The correctness of the mechanical analysis and the feasibility of the method are verified by the MY3-OMR prototype. Let MY3-OMR move along the set circular trajectory and square trajectory, and the error between the motion trajectory before and after optimization and the standard trajectory is obtained. It illustrates that the error in the square trajectory is reduced by 1.5%, and the circular trajectory error is reduced by 2%; therefore, the method is effective.

Originality/value

A method based on contact mechanics is proposed and verified. Through the establishment of wheel-ground contact mechanics model to optimize MY3-OMR kinematics model, and thereby, the motion accuracy of MY3-OMR is improved, which lays a foundation for MY3-OMR engineering application.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2016

Haitao Yang, Zongwu Xie, Cao Li, Xiaoyu Zhao and Minghe Jin

The purpose of this paper is to study the path optimization method of the manipulator in the lunar soil excavation and sampling process. The current research is a practical need…

Abstract

Purpose

The purpose of this paper is to study the path optimization method of the manipulator in the lunar soil excavation and sampling process. The current research is a practical need for the excavation and sampling of the lunar soil in the lunar exploration project.

Design/methodology/approach

This paper proposes the objective function and constraints for path optimization during the excavation process of the lunar soil, regarding excavation time and energy consumption as the two key fitness indexes by analyzing the whole excavation process of the lunar soil. Specifically, the optimization is divided into two consecutive phases, one for the excavation path and the other one for joint motions. In the first phase, the Bézier polynomial is adopted to get the optimal excavation angle and reduce energy consumption. In the second phase, a method based on convex optimization, variable conversion and dynamic process discretization, is used to reduce excavation time and energy consumption.

Findings

Controlled experiments on the fine sand and the simulant lunar soil were conducted to verify the feasibility and effectiveness of the two phases of the optimization method, respectively.

Originality/value

The optimization method of the excavation tasks in this paper is of great value in theoretical and practical engineering, and it can be applied in other robotic operational tasks as well.

Details

Industrial Robot: An International Journal, vol. 43 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 May 2020

Haojie Zhang, Yudong Zhang and Tiantian Yang

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy…

Abstract

Purpose

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy supply. The purpose of this paper is to survey the current state-of-the-art on energy-efficient motion planning (EEMP) for wheeled mobile robots.

Design/methodology/approach

The use of wheeled mobile robots has been increased to replace humans in performing risky missions in outdoor applications, and the requirement of motion planning with efficient energy consumption is necessary. This study analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present. The dynamic constraints play a key role in EEMP problem, which derive the power model related to energy consumption. The surveyed approaches differ in the used steering mechanisms for wheeled mobile robots, in assumptions on the structure of the environment and in computational requirements. The comparison among different EEMP methods is proposed in optimal, computation time and completeness.

Findings

According to lots of literature in EEMP problem, the research results can be roughly divided into online real-time optimization and offline optimization. The energy consumption is considered during online real-time optimization, which is computationally expensive and time-consuming. The energy consumption model is used to evaluate the candidate motions offline and to obtain the optimal energy consumption motion. Sometimes, this optimization method may cause local minimal problem and even fail to track. Therefore, integrating the energy consumption model into the online motion planning will be the research trend of EEMP problem, and more comprehensive approach to EEMP problem is presented.

Research limitations/implications

EEMP is closely related to robot’s dynamic constraints. This paper mainly surveyed in EEMP problem for differential steered, Ackermann-steered, skid-steered and omni-directional steered robots. Other steering mechanisms of wheeled mobile robots are not discussed in this study.

Practical implications

The survey of performance of various EEMP serves as a reference for robots with different steering mechanisms using in special scenarios.

Originality/value

This paper analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 6000