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Abstract

Purpose – This paper aimed a fractional-order sliding mode-based lateral lane-change control method that
was proposed to improve the path-tracking accuracy of vehicle lateral motion.
Design/methodology/approach – In this paper the vehicle presighting and kinematic models were
established, and a new sliding mode control isokinetic convergence law was devised based on the fractional
order calculus to make the front wheel turning angle approach the desired value quickly. On this basis, a
fractional gradient descent algorithmwas proposed to adjust the radial basis function (RBF) neuron parameter
update rules to improve the compensation speed of the neural network.
Findings –The simulation results revealed that, compared to the traditional slidingmode control strategy, the
designed controller eliminated the jitter of the sliding mode control, sped up the response of the controller,
reduced the overshoot of the system parameters and facilitated accurate and fast tracking of the desired path
when the vehicle changed lanes at low speeds.
Originality/value – This paper combines the idea of fractional order calculus with gradient descent
algorithm, proposed a fractional-order gradient descent method applied to RBF neural network and fast
adjustment the position and width of neurons.
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1. Introduction
Intelligent vehicles identify nearby vehicles and road conditions through the feedback
provided by on-board sensors to the vehicle controller (Mozaffari et al., 2022). When the
vehiclemoves laterally, the tracking error needs to be adjusted in time to ensure accurate road
trajectory tracking accuracy, and the controller is required to eliminate external interference
online to satisfy the steering lane change requirements. Thus, vehicle lateral control has
become a hot topic in intelligent vehicle research (Tian et al., 2022).

The vehicle lateral control system is complex and has many control variables that require
an onboard controller to calculate and adjust the wheel deflection angle in real time. Several
studies have proposed multiple algorithms for the vehicle lateral control problem. Nadia et al.
(Zendehdel and Gholami, 2021) combined fuzzy algorithm with a proportional integral
derivative (PID) controller to design a robust PID feedback system to autonomously adjust
PID parameters to achieve lateral path tracking. Yang et al. (2021) designed a feed forward
and predictive linear quadratic regulator (LQR) coupled with the lateral control algorithm
based on the path tracking error model, which was adapted to the system environment with
complex and unknown disturbance quantities. Chen et al. (2021) proposed a feed forward and
feedback system based on the LQR control to reduce the lateral tracking error and improve
system robustness by solving for the front wheel lateral deflection force.

The proposal of intelligent control algorithms has helped in the development of the
automotive industry, and the control algorithm with neural networks as the system solution
has gradually become one of the research objectives for scholars and engineers aiming to
optimize traditional controllers (Aalizadeh and Asnafi, 2018; Fan et al., 2022). Intelligent
control, the frontier technology of automatic control, solves complex linear and uncertain
control problems (Guo et al., 2021). The sliding mode control algorithm is simple and easy to
implement with high robustness. Therefore, the combination of intelligent control and sliding
mode control has become a primary solution in engineering. However, jitter is the most
important problemmany scholars have aimed to solve. Gao et al. (2017) used adaptive control
and fuzzy control as the sliding mode control parameter adjustment optimization algorithm,
using the online fitting capability of the adaptive algorithm to adjust the fuzzy control
algorithm parameters in real time, to achieve lateral path tracking for changes in its own
parameters and external disturbances, which effectively reduced the jitter problem of the
sliding mode control algorithm. Zhang et al. (2019) established a two-point presighting
systemwith fuzzy control and designed fuzzy rules to adaptively adjust the weight factors of
near and far points to solve the heading error; the system had a good path tracking capability.
Fan et al. (2022), to solve the problems such as parameter time variation and output jitter, used
the radial basis function (RBF) neural network to optimize the sliding mode controller
convergence law to eliminate the time-varying vehicle.

The designed control system had strong robustness to various problems such as time-
varying parameters and output jitter. Luo and Guo (2021) designed an adaptive neural
network sliding mode controller based on an optimized sliding mode control algorithm using
an RBF neural network online to compensate for adverse external disturbances and achieve
fast and accurate tracking of wheel turning angles to improve the robustness of the system.
Zhou et al. (2019) used an improved particle swarm algorithm to dynamically solve the RBF
neural network structure and fit the sliding mode control switching parameters online to
significantly reduce the time to reach the slidingmode surface, eliminate the systemmodeling
uncertainty and other adverse effects, and alleviate the system oscillations.

The system variables of the vehicle lateral control are strongly coupled, and, therefore,
have extremely high requirements for the solution speed of the controller (Li, 2021). To
overcome the problems of slow convergence speed of the sliding mode controller and poor
anti-disturbance capability of the system, the isokinetic convergence law based on fractional-
order calculus was optimized in this study for fast convergence to the sliding mode surface.
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Furthermore, an RBF neural network was used to dynamically compensate the uncertain
parameters in the vehicle model and the unknown disturbances of the system online, and the
Lyapunov function was used for the stability analysis of the proposed control system
proposed (Mu~noz-V�azquez et al., 2022; Wang et al., 2019). On this basis, for the problem of
updating neuron parameters in the RBF neural network, the idea of fractional order was
introduced and a caputo-based fractional order gradient descent algorithm was designed to
solve the width and position of neurons in the RBF neural network in real time. Compared
with the traditional sliding mode control and the sliding mode controller following RBF
optimization, the proposed control algorithm proposed can effectively improve the system by
eliminating jitter, dynamically compensating the unknown disturbance quantity of the
system and achieving fast tracking of the desired path.

The remainder of this paper is organized as follows. The kinematic mathematical model of
the vehicle is presented in Section 2. The structure of the sliding-mode controller with RBF
optimization is presented in Section 2. In Section 4, the simulation results for two different
scenarios are presented. The conclusion is presented in Section 5.

2. Vehicle dynamics modeling
2.1 Vehicle preview model
The driver completes the steering operation by adjusting the steering wheel angle to reduce
the deviation of the desired path from the body attitude, and controlling the accelerator pedal
to complete the speed regulation of the vehicle when steering (Alexandru, 2017). Therefore,
the controller dynamically adjusts the front-wheel rotation angle such that the deviation is
zero when the smart vehicle tracks the desired path. We studied the vehicle single-point
pretargeting model (point L in Figure 1) as the object of study and considered the center point
of the front and rear axles of the vehicle (point O in Figure 1) as the coordinate origin and
established the coordinate system, as shown in Figure 1.

The vehicle kinematic model was established based on the coordinates shown in Figure 1,

_yL ¼ vxεL � vy � _wDL

_εL ¼ vxKL � _w

�
(1)

where yL is the relative lateral distance between points L and O, vx and vy represent the
forward and lateral velocities of the vehicle, respectively. εL is the heading angle of the
vehicle at point L. w is the transverse sway angle of the vehicle. DL is the relative
longitudinal distance between points L and O, and KL is the curvature of the desired road
trajectory ahead.

Figure 1.
(a) Vehicle 2-degree-of-
freedom model and (b)

Single-point
presighting model
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2.2 Vehicle two-degree-of-freedom model
The lateral motion of the intelligent vehicle adjusts the deviation of the self-vehicle position
from the pretargeting point by dynamically adjusting the front-wheel turning angle through
the actuator. To reduce modeling complexity and control system arithmetic, this study was
premised on the following assumptions about the vehicle modeling problem:

(1) Themodel completely ignored the influence of the vertical motion of the vehicle on the
lateral motion characteristics.

(2) The model took the front-wheel angle as the control system input and assumed that
the left and right wheel angles were equal at all times during steering.

(3) The effect of the lateral deflection force on lateral motion owing to the tires was not
considered, and it was assumed that both sides of the body dynamics parameters
responded similarly when the vehicle was moving.

Based on the above assumptions, the two-degree-of-freedom vehicle motion model was
considered as the main research object and the model differential equations were established
as follows:

ðk1 þ k2Þ vy
vx

þ ðl1k1 � l2k2Þ _w

vx
� k1δ ¼ m _vy þ vx _wð Þ

ðl1k1 � l2k2Þ vy
vx

þ �l12k1 þ l2
2k2
� _w

vx
� l1k1δ ¼ Iz _w

8>><>>: (2)

where k1 and k2 are the lateral deflection stiffnesses of the front and rear axle tires,
respectively. l1 and l2 are the distances from the center of the front and rear axles to the center
of mass of the vehicle, respectively. δ is the front-wheel angle, wherem is the overall mass of
the vehicle. Iz is the rotational inertia of the vehicle in the vertical direction.

2.3 Vehicle motion state model
Based on the above model analysis, the system state equation was established as (Lai and
Huang, 2022)

_X ¼

2664
a1 a2 0 0
a3 a4 0 0
�1 �DL 0 vx
0 �1 0 0

3775þ

2664
c1
c2
0
0

3775δþ
2664
0
0
0
vx

3775KL (3)

where X represents the system state, X ¼
h
vy _w yL εL

iT
, a1 ¼ −

k1þk2
mvx

, a2 ¼ −
l2k2 − l1k1

mvx
,

a3 ¼ −
l2k2 − l1k1

Izvx
, a4 ¼ −

l1
2k1 − l2

2k2
Izvx

, c1 ¼ k1
m
, c2 ¼ l1k1

IZ
.

The ideal lateral motion of the vehicle is a zero deviation of the self-driving vehicle from
the desired trajectory at the presighting point (point L in Figure 1). The equation of motion
state for vehicle motion with body attitude deviation p is

€p ¼ A _pþ Bpþ Cδþ D (4)

where p ¼
�
yL
εL

�
, A ¼

�
0 A1

A2 A3

�
, B ¼

�
B1 B2

B3 0

�
, C ¼

�
C1

C2

�
, D ¼

�
D1

D2

�
.

The parameters in the matrix are specifically expressed as
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&

8><>:
A1 ¼ vx � a1DL þ a2 � a3DL

2 þ a4DL

A2 ¼ a3

A3 ¼ a4 � a3DL

;

8><>:
B1 ¼ a1 þ a3DL

B2 ¼ −a1vx � a3vxDL

B3 ¼ −a3vx

;

&

�
C1 ¼ −c1 � c2DL

C2 ¼ −c2
;

(
D1 ¼

�
a1DL � a2 þ a3DL

2 � a4DL

�
vxKL

D2 ¼ ða3DL � a4ÞvxKL þ vxKL

In the above analysis, the vehicle front-wheel turning angle was considered as the problem
entry point and a complete vehicle motion model was established. The ideal vehicle attitude
deviation was taken as the desired value, and the actual attitude deviation pwas compared
with the desired value to obtain the change in attitude deviation, thus establishing the
vehicle–vehicle lateral control expectation model.

3. Fractional-order slidingmode control based on neural-network compensation
Vehicle modeling uncertainty and external unknown disturbances have a large impact on the
vehicle path tracking accuracy. Therefore, the RBF neural network was used to compensate
the unknown disturbances in the system online dynamically. The working-state structure of
the system is shown in Figure 2. The system was realized by deploying the fractional order
calculus to build a new equal convergence law for fast convergence to the sliding mode
surface, while eliminating the control system oscillations problem in the traditional sliding
mode control algorithm.

3.1 Fractional order sliding mode control
Three types of calculus, GL-defined, RL-defined and Caputo-defined are widely used in
engineering projects (Swain et al., 2021). The Caputo definition operator does not require the
determination of the initial value of the fractional-order derivative, a unique property that is
extremely convenient for numerical calculations with nonzero initial values. The Caputo
definition has been intensively studied by scholars because it is an extension of the integer
order derivative and is suitable for expressing its initial conditions, in terms of simple integer-
order derivatives. The three definitions are as follows:

RL

t0
Dα

t f ðtÞ ¼
1

Γðn� αÞ
dn

dtn

Z t

t0

f ðτÞ
ðt � τÞαþ1−n

dτ

GL

t0
Dα

t f ðtÞ ¼ lim
h→0

1

hα
X½ðt−t0Þ=h�
j¼0

ð−1Þj
�
α
j

�
f ðt � jhÞ

Figure 2.
Control system

structure diagram
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C

t0
Dα

t f ðtÞ ¼
1

Γðn� αÞ
Z t

t0

f
ðnÞðτÞ

ðt � τÞαþ1−n
dτ

where
RL
t0
Dα
t denotes the RL integral operator,

GL
t0
Dα
t denotes the GL integral operator,

C
t0
Dα
t

denotes the Caputo integral operator, α denotes the order of the integral operator and h

denotes the integration step.

�
α
j

�
is the number of combinations that can be calculated using

the following equation:�
α
j

�
¼ αðα� 1Þðα� 2Þ � � � ðα� jþ 1Þ

j!
¼ α!

j!ðα� jÞ! (5)

where Γð∙Þ is the Gamma function, defined as follows:

ΓðηÞ ¼
Z

∞

0

e−tux−1du (6)

Lemma 1. If x 5 0 can obtain the equilibrium condition of Equation (8), then
CDαxðtÞ ¼ f ðx; tÞ (7)

where f ðx; tÞ satisfies the Lipschitz condition.
Suppose Lyapunov’s theorem satisfies the following conditions

α1ðkxkÞ≤V ðt; xðtÞÞ≤ α2ðkxkÞ
CDβVðt; xðtÞÞ≤ � α3ðkxkÞ

(8)

where α1, α2 and α3 are all positive integers, β∈ ð0; 1Þ
Then, it was demonstrated that the system represented by Equation (8) was stable.
Define the expression of the system path-tracking attitude error as

e ¼ p� pd (9)

where p is the actual deviation, pd is the expected deviation; therefore, pd ¼ 0.

The design sliding surface is

s ¼ λeþ _e (10)

where λ is the design parameter, λ ¼
�
λ1 0
0 λ2

�
, and λ1 and λ2 are both greater than zero.

We integrated the left-hand side s of Equation (10) to obtain

_s ¼ λ _eþ €e ¼ λ _eþ A _pþ Bpþ Cδþ D � f _p; t
� �þ Δf _p; t

� �þ dðtÞ� �
(11)

where f ð _p; tÞ is the nonlinear system term, Δf ð _p; tÞ is the unknown disturbance of the
system, dðtÞ is the external unknown disturbance satisfying dðtÞ ≤M, whereM is the upper
limit of the disturbance.

The traditional sliding mode control algorithm converged slowly, resulting in a long
convergence time to the sliding mode surface. Further, there was a jitter problem. Therefore,
the Caputo definition of the integral operator was used to optimize the equal speed
convergence law in this study, as defined below:
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CDαs ¼ −kc sgnðsÞ (12)

where 0 ≤ α ≤ 1.

Therefore, we can obtain

_s ¼ CD1�αð−kc sgnðsÞÞ (13)

The following Lyapunov function was used

V ¼ 1

2
sTs (14)

We derived both ends of the above equation simultaneously and obtained

_V ¼ sT _s ¼ sTCD1�αð−kc sgnðsÞÞ (15)

Owing to the

sgn
h
CD1�αð−kc sgnðsÞÞ

i
¼ −kc sgnðsÞ (16)

Then

sgnð _V Þ ¼ sgn
�
sT
�
sgn
	
CD1�αð−kc sgnðsÞÞ



¼ sgn

�
sT
�
sgnð−kc sgnðsÞÞ ¼ −kc (17)

We obtained

_V ≤ 0

According to Lemma 1, the system designed was stable.
The equivalent control input δeq designed in this study contained the model uncertainty

and the unknown disturbance of the system was

δeq ¼ −C
Tðλ _eþ A _pþ Bpþ Cδþ D � f ð _p; tÞ � Δf ð _p; tÞ � dðtÞ þ CD1�αðkcsgnðsÞÞ (18)

By adjusting the magnitude of parameters α and k, the speed of convergence of the system
state to the slipform surface could be adjusted to reduce the system overshoot and solve the
system jitter problem.

3.2 Neural network optimization and compensation strategies
The RBF neural network has strong approximation ability and fast convergence during
training. It has been favored by many scholars as an optimization algorithm in recent years.
As shown in Figure 3, the input layer is typically composed of the system source signal.

Figure 3.
RBF neural network

structure
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In this study, the signal of the input layer was designed as x ¼
h
e _e

i
, where e is the vehicle

attitude deviation. The implicit layer contained many nodes, and the number of neurons
depended on the conditions of the problem to be solved as well as the complexity of the
network. The output layer is generally an optimization-type linear function that mainly
processes the results of the implicit layer and weighted output externally (Liu et al., 2022).

In this study, we used the Gaussian kernel function as the activation function of the
network and set the system perturbation as ΔFð _p; tÞ. We used the neural network to
approximate ΔFð _p; tÞ as follows:

hiðσ1Þ ¼ exp

 
kp� cik2

2bi
2

!
(19)

ΔFð _p; tÞ ¼ W *ThðpÞ þ V *ThðpÞ þ ε (20)

where p is the external signal input, ci is the central position of the ith neuron, and bi is the
width of the ith neuron.

We defined the ΔFð _p; tÞ ¼ Δf ð _p; tÞ þ dðtÞ. hðpÞ is the output signal after Gaussian
transformation.W * andV * are the ideal weights for the network, ε is the approximation error
of the network, which satisfies ε ≤ εN .

The update law of the design network weight matrix is (Zhao et al., 2022)

W ¼ σ1hðσ1Þ
ηm

(21)

The RBF neural network includesW, bi and ci, and three types of parametersmust be updated
online. The above equation gives the update rule forW, bi and ci can be updated by gradient
descent (Ji et al., 2018).

In this study, we combined the idea of fractional-order calculus to design a fractional-order
gradient descent algorithm to update the neuron center position ci and width bi of the RBF
neural network, which needs to first find the fractional-order gradient. We defined the
performance objective function using the improved iteration rule as

E ¼ 1

2

�
σ1 _σ1

�2

(22)

Tkþ2 ¼ Tkþ1 � ρCTk
Dα

Tkþ1
E (23)

where ρ is the iteration step, ρ > 0.

The updated values at the kþ1th moment are as follows:

C

Tk

Dα
Tkþ1

E ¼
X∞
i¼0

Eðiþ1ÞðTkÞ
Γði þ 2� αÞ ðTkþ1 � TkÞiþ1−α

(24)

To meet the practicality of the algorithm, as Tk –Tk−1 goes to 0 and simplify the formula, we
can obtain

Tkþ2 ¼ Tkþ1 � ρ
Γð2� αÞE

ð1ÞðTkþ1ÞðTkþ1 � TkÞiþ1−α
(25)

where 1=Γð2 − αÞ can be considered as part of the step size. Thus, Equation (25) can be
further transformed into
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Tkþ2 ¼ Tkþ1 � ρEð1ÞðTkþ1ÞðTkþ1 � TkÞiþ1−α
(26)

To improve the stability of the algorithm and eliminate the singularity of the algorithm itself,
a deviation f was added to the above equation to guarantee the gradient descent criterion.
Then, Equation (26) can be written as

Tkþ2 ¼ Tkþ1 � ρEð1ÞðTkþ1ÞðjTkþ1 � Tkj þ fÞiþ1−α
(27)

where ρ > 0, 0 < α < 2.

Equation (27) is the updated iteration process based on the gradient descent method
defined by Caputo. Applying Equation (27) to the RBF neural network, the update formulas
for the width bi and center position ci of the neurons are as follows:

biðkþ 2Þ ¼ biðkþ 1Þ � rt1
vE

vbi
3 ðjbiðkþ 1Þ � biðkÞj þ fÞ1−α (28)

ciðkþ 2Þ ¼ ciðkþ 1Þ � rt2
vE

vciðkþ 1Þ3 ðjciðkþ 1Þ � ciðkÞj þ fÞ1−α (29)

Equations (28) and (29) are the update rules for the neuron width and position parameters of
the novel gradient-descent method. The designed network output is:bFð _p; tÞ ¼ bWT

hðpÞ þ bVT

hðpÞ (30)

where we defined eFð _p; tÞ ¼ ΔFð _p; tÞ− bFð _p; tÞ, and the unknown disturbance ΔFð _p; tÞ of the
system was compensated using the RBF neural network as follows:

ΔFð _p; tÞ � bFð _p; tÞ ¼ W *ThðpÞ þ V *ThðpÞ þ ε� bWhðpÞ þ bVhðpÞ ¼ eWhðpÞ þ eVhðpÞ þ ε

(31)

We defined the Lyapunov function as

V ¼ 1

2
sTsþ 1

2γ1
eWT eW þ 1

2γ2
eVT eV (32)

where γ1; γ2 > 0; eW ¼ W * − bW ; eV ¼ V * − bV
The design control law δeq was

δeq ¼ −C
Tðλ _eþ A _pþ Bpþ D � f _p; t

� �� bF _p; t
� �þ CD1�α kcsgn sð Þð Þ (33)

Then, we could obtain

_s ¼ λ _eþ A _pþ Bpþ Cδeq þ D � f ð _p; tÞ � ΔFð _p; tÞ ¼
λ _eþ A _pþ Bpþ D � f ð _p; tÞ � ΔFð _p; tÞþ
Cð−CTðλ _eþ A _pþ Bpþ D � f ð _p; tÞ � bFð _p; tÞ þ CD1−α ðkcsgnðsÞÞÞ ¼
�eFð _p; tÞ � CD1−αðkcsgnðsÞÞ

(34)

We took the adaptive law as

_bW ¼ γ1shðpÞ; _bV ¼ γ2shðpÞ
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From the foregoing, we obtained

_V ¼ 1

2
sT _sþ 1

2γ1
eWT _eW þ 1

2γ2
eVT _eV

¼ sT ½−eF _p; t
� �� CD1−α kcsgn sð Þð Þ� � 1

γ1
eWT _eW � 1

γ2
eVT _eV

¼ sTð− eWT
h pð Þ � eVT

h pð Þ � ε � CD1−α kcsgn sð Þð ÞÞ � 1

γ1
eWT _eW

� 1

γ2
eVT _eV ≤−sT εþ CD1−α kc sgn sð Þð Þ� �

≤ � sTε� CD1−αkc
��sT �� (35)

We let CD1− αkc > jεN j obtain _V < 0, which proved that the proposed control law satisfied
the Lyapunov stability condition.

4. Simulation and analysis
4.1 Simulation environment
To verify the effectiveness of the sliding mode control algorithm based on the proposed RBF
and fractional order calculus optimization, real scenarios and vehicle parameter models were
built in Carsim, and different control algorithms were built in Matlab/Simulink respectively.
A joint Carsim and Simulink simulation platformwas established to complete the comparison
between the traditional sliding mode control algorithm and the RBF neural network-based
sliding mode. The vehicle parameter response of the traditional sliding mode control
algorithm and RBF neural network-based sliding mode control algorithm were compared.
The simulation environment of the control system is shown in Figure 4.

The parameters of the vehicle simulation model parameters and the controller and neural
network were as shown in Tables 1 and 2, respectively.

Parameter Units Values

Vehicle overall mass kg 1,100
Front (rear) wheelbase mm 1,450 (1,450)
Lateral deflection stiffness of front (rear) tires ðN∙rad –1Þ �49000 (�50000)

Steering system ratio 1 15

Figure 4.
Simulink/Carsim
co-simulation
environment

Table 1.
Vehicle model
parameters setting
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4.2 Simulation results and analysis
We used a low-speed lane-change simulation condition to simulate the realistic feeling of a
driver’s active lane-change.We designed three vehicle speeds, 15 km/h, 20 km/h and 25 km/h,
to simulate a low-speed lane change, and the simulation results are shown in Figures 5–7.

(1) When the vehicle speed was 15 km/h.

(2) When the vehicle speed was 20 km/h.

(3) When the vehicle speed is 25 km/h.

The above simulation environment was set up with three different speed values to simulate
vehicle lane changing on low speed, and we compared the path-tracking curves of the vehicle
lane changing from Figures 5(a), 6(a) and 7(a). We also compared the following three response
parameters, namely, the vehicle path tracking error in Figures 5(b), 6(b) and 7(b); the vehicle
transverse sway angle in Figures 5(c), 6(c) and 7(c); and the solving time for each step of the
controller in Figures 5(d), 6(d) and 7(d). By comparing the above parameters, we further
analyzed the advantages and disadvantages of the three control algorithms, and the specific
numerical deviation values are shown in Table 3.

The error of each parameter was obtained fromTable 3, the average value of the error was
calculated, and the data are shown in Figure 8.

All three control algorithms exhibited good path-tracking capability when the vehicle was
running at a set speed value. As shown in Figures 5–7, the conventional sliding mode control

Parameter Units Value

Switching variables λ Diag(10, 10, 10, 10, 20)
Number of nodes in the hidden layer of the neural network n 15
Fractional order calculus order α 0.9
Constants γ1; γ2; kc 1.5, 10, diag(0.8,4,4,5,5)
Minimal positive value δ 1 3 10–8

Table 2.
Controller parameter

setting

Figure 5.
v5 15 km/h parameter

response
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Parameter Control algorithm v 5 15 km/h v 5 20 km/h v 5 25 km/h

Yaw Rate SMC �6.51–6.14 �6.49–6.44 �6.56–6.52
RBF-SMC �5.38–5.54 �5.43–5.59 �5.26–5.52
RBF-FOCSMC �4.92–5.44 �4.49–4.67 �4.37–4.35

Error SMC �0.148–0.158 �0.162–0.167 �0.153–0.104
RBF-SMC �0.057–0.058 �0.078–0.079 �0.104–0.101
RBF-FOCSMC �0.032–0.020 �0.033–0.033 �0.047–0.046

Mean solution time SMC 0.435 3 10–3 0.403 3 10–3 0.428 3 10–3

RBF-SMC 0.283 3 10–3 0.281 3 10–3 0.291 3 10–3

RBF-FOCSMC 0.251 3 10–3 0.243 3 10–3 0.245 3 10–3

Figure 6.
v5 20 km/h parameter
response

Figure 7.
v5 25 km/h parameter
response

Table 3.
Parameter response
comparison
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algorithm had significant jitter during turning and exhibited large system delays and values
in each parameter of the vehicle lateral control, which was mapped to the actual scenario as a
poor driving experience for the driver. The lateral deviation of all the three algorithms was
zerowhen the vehicle was driving in a straight line.When it was steering, the lateral deviation
of all the three control algorithms fluctuated. However, the traditional sliding mode control
had a larger range of values, with an absolute extreme value of 0.167m. The absolute extreme
values of the lateral deviation of the RBF neural network-based sliding mode control
algorithm and the proposed fractional-order optimization-based control algorithm proposed
were 0.104 m and 0.046 m, respectively. In terms of the algorithm solution time, the
conventional sliding mode controller had the longest step solving time, with the absolute
extreme value of 0.435 ms. The absolute extreme value of the proposed fractional order
optimization-based control algorithm was 0.243 ms, an of 42.2%, 39.7% and 42.7%,
respectively, on that of the conventional SMC control algorithm at the three speeds, 15 km/h,
20 km/h and 25 km/h. The improvements over the RBF-SMC algorithm were 11.3%, 13.5%
and 15.8%, respectively.

4.3 Real vehicle test
We considered road driving safety, as shown in Figure 9(a), and performed one-quarter model
real vehicle experiments to test the superiority of the RBF-FOCSMC algorithm. The vehicle
parameters are presented in Table 4.

To further compare the RBF-SMC and RBF-FOCSMC algorithms, we set the path for
continuous 8-shaped roads to simulate continuous curve conditions to test the tracking
performance. We set a low-speed condition of 15 km/h in the experiment, and the experiment
results are shown in Figure 10.
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(a) Percentage
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Figure 9.
(a) One-quarter real
vehicle model. (b)

Schematic diagram of
the 8-type curve of the

industrial park. (c)
Vehicle is driving on
the left turn curve in

Type “8”. (d) Vehicle is
driving on the right

turn curve in Type “8”
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To test the curve path-tracking performance of the proposed algorithm, we designed a real
driving scenario on a road with continuous 8-shaped curves to further compare the proposed
RBF-SMC and RBF-FOCSMC algorithms. The actual vehicle trajectories of the two
algorithms were compared, as shown in Figure 10(a). In Figure 10(b), we compared the path-
tracking errors of the two algorithms. In Figure 10(c) and (d), we compared the lateral and
longitudinal vehicle displacements of the two algorithms, respectively. In Figure 10(e), we
compared the transverse sway angles of the two algorithms. In Figure 10(f), we compared the
controller step solution times of the two algorithms. The specific numerical error values of the
two algorithms are listed in Table 5.

As shown in Table 5, the extreme values of the path-tracking error of the RBF-SMC
algorithm and the RBF-FOCSMC algorithm were 0.120 m and 0.052 m, respectively, in a
continuous curved road scenario with a vehicle speed of 15 km/h. The path-tracking
performance improved by 59.94%. From Figure 11, it was evident that the RBF-FOCSMC

Parameters Symbols Numerical value

Vehicle overall mass kg 150
Diameter of the tire mm 450
Vehicle wheelbase mm 1,000
Vehicle turning radius m 2.54

Table 4.
One-quarter of the
experimental vehicle
parameters

Figure 10.
Type 8 road
parameters
accordingly
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algorithm had a smaller error than the reference path. The controller step solution time was
compared and the average solution time of the RBF-SMC and RBF-FOCSMC algorithmswere
0.549 ms and 0.359 ms, respectively. Thus, the proposed method improved the solving
performance by 34.61%.

The above simulation and experiment results showed that the RBF-FOCSMC algorithm
outperformed the extant method. The results also revealed that the application of fractional-
order calculus can improve the system solution speed. The author applied only the gradient
descent method to the control law. From the above simulation results, it can be seen that the
designed RBF-FOCSMC converged quickly, compared with the SMC and RBF-SMC
algorithms, and the performance of the control system improved significantly.

5. Conclusion

(1) In this paper, the fractional-order calculus was introduced to optimize the sliding
mode control algorithm. The proposed method incorporated the RBF neural network
to dynamically compensate for external adverse disturbances. The neural network
becomes computationally expensive when there are too many external uncertainties.
Therefore, the RBF network weights were updated whenever there were problems
such as training difficulty and slow convergence speed. Therefore, this paper
combines the idea of fractional order calculus with gradient descent algorithm,
proposed a fractional-order gradient descent method applied to RBF neural network
and fast adjustment the position and width of neurons.

(2) The MATLAB and Carsim simulation platforms were used to build a vehicle lateral
control scene to verify the effectiveness of the algorithm and compare it with the
traditional SMC and RBF-SMC algorithms using the traditional gradient descent
method. Based on the above simulation and experiment results, the proposed
optimized RBF-FOCSMC algorithm is superior to both traditional algorithms in terms
of system convergence speed and lateral path-tracking accuracy.

Parameter Control algorithm v 5 15 km/h

Error RBF-SMC �0.120–0.117
RBF-FOCSMC �0.052–0.043

Mean solution time RBF-SMC 0.549 3 10–3

RBF-FOCSMC 0.359 3 10–3
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(3) However, only the performance capability of the control algorithm from the lateral
motion and one-quarter of the vehicle model was tested. In future research, we will
examine real vehicles under multiple working conditions and driving conditions such
as the path-tracking scenario of transverse-longitudinal coupling.
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