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Abstract
Purpose – Both geometric and non-geometric parameters have noticeable influence on the absolute positional accuracy of 6-dof articulated
industrial robot. This paper aims to enhance it and improve the applicability in the field of flexible assembling processing and parts fabrication by
developing a more practical parameter identification model.
Design/methodology/approach – The model is developed by considering both geometric parameters and joint stiffness; geometric parameters
contain 27 parameters and the parallelism problem between axes 2 and 3 is involved by introducing a new parameter. The joint stiffness, as the
non-geometric parameter considered in this paper, is considered by regarding the industrial robot as a rigid linkage and flexible joint model and
adds six parameters. The model is formulated as the form of error via linearization.
Findings – The performance of the proposed model is validated by an experiment which is developed on KUKA KR500-3 robot. An experiment is
implemented by measuring 20 positions in the work space of this robot, obtaining least-square solution of measured positions by the software
MATLAB and comparing the result with the solution without considering joint stiffness. It illustrates that the identification model considering both
joint stiffness and geometric parameters can modify the theoretical position of robots more accurately, where the error is within 0.5 mm in this case,
and the volatility is also reduced.
Originality/value – A new parameter identification model is proposed and verified. According to the experimental result, the absolute positional
accuracy can be remarkably enhanced and the stability of the results can be improved, which provide more accurate parameter identification for
calibration and further application.

Keywords Robot calibration, Joint stiffness, Laser tracker, Parameter identification model

Paper type Technical paper

1. Introduction

Because of the characteristics of dexterity, high automation,
good flexibility and low cost (Wang et al., 2018; Chen et al.,
2017), the industrial robot, as the most typical mechatronic
digital equipment, is more and more widely applied in the field
of precision work such as automatic assembly, drilling and
riveting, dimension inspections and laser machining.
Meanwhile, due to the increasing requirements of the
complexity and flexibility of the industrial robot operation and
frequent usages in the real-time applications (Bo et al., 2014),
the off-line programming technology has become a hotspot in
the robot technology. However, although the repeatability
accuracy of the industrial robot can be high enough, the
absolute positioning accuracy is rather low (For instance, the
repeatability accuracy of KUKA KR500-3 type robot is
0.08mm but the absolute accuracy only reaches to centimeter-

level.), which severely restricts the popularization and
application of the robot off-line programming technology.
To improve the absolute positional accuracy and promote

the practicability of off-line programming, the robot calibration
is the main technology, which contains the processes of
modeling, measurement, parameter identification and
compensation (Ren et al., 2007). Among these steps, the
parameter identification is a crucial part, which divides the
identification into two types, geometric parameter calibration
and the non-geometric parameter calibration (Nubiola and
Bonev, 2013), based on the different types of identification
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parameters. According to Zhong and Lewis (1995), Liou et al.
(1993), as well as Ziegert (1988), the factors that affect the
absolute positioning accuracy of the industrial robot are
multitudinous, consisting of geometric factors that include the
structure parameter error caused by assembly and
manufacturing process, zero deviation and specific applications
(end effector installation), as well as non-geometric factors that
include environmental factors such as the temperature, kinetic
parameters, stiffness, backlash and other nonlinearities. On
account of the lower stiffness, the absolute positioning errors of
industrial robots caused by compliance errors due to the
external load cannot be neglected.
However, most traditional calibration technologies for

industrial robots are limited to studying the influence of a single
factor on the absolute positioning accuracy of the robot and
ignore the coupled effect of various factors on this accuracy.
Chen et al. (2008) developed a convenient and practical
method which only calculated the zero offset. Considering the
robot end-effector errors, Joubair et al. (2016) developed an
analysis to determine the most appropriate observability index,
which allowed for the best parameter identification, and Oh
(2018) proposed a method to analyze the robot geometric error
by using the datameasured during circle contouring movement
of the industrial robot end effectors. Besides the research
related to geometric parameters, there are also many studies
considering non-geometric parameters. On the premise of
neglecting the error from geometric parameters, Chen (2011)
and Wang et al. (2009) analyzed and identified the robot joint
stiffness. Based on the calibration modeling of relative
positioning accuracy and the identification of geometric
parameters, Wang et al. (2011) proposed a method to
compensate the compliance error of the external load and self-
weight. He et al. (2017) identified the geometric parameters
based on kinematics parameter calibration and proposed a
method of compensation for residual error based on error
similarity. Filion et al. (2018) applied a portable
photogrammetry system to proceed the elasto-geometrical
model and parameter identification. Considering both
geometric and non-geometric parameters, Karan and
Vukobratovic (2009) elaborated a joint-stiffness identification
model but did not display the specificmodel.
According to the literature, there are a few researches

integrated considering the geometric and non-geometric
parameters into the identification and calibration. Therefore, to
remove the coupled effect of multi-factors on positioning
accuracy and improve it, this paper proposes a more practical
parameter identification model which considers geometric
parameter errors and compliance errors caused by external
loads. Based on the proposed model, a calibration experiment
on KUKA robot KR500-3 is performed and the result analysis
verifies that the proposed model can enhance the absolute
positioning accuracy and reduce the volatility at the same time.

2. Kinematics model of the 6R robot

Based on the classical DH coordinate system, the kinematics
model is set up, which is shown in Figure 1. The robot
theoretical DH parameters are shown in Table I. The robot
used in this paper is KUKA KR500-3 type robot, whose
payload, arm length and repeatability are 5006 50kg,

2826mm and 0.08mm, respectively. Some specific values of
parameters of this robot are also shown inTable I.

3. Positional error model

3.1 Geometric and non-geometric factors
The positioning error of industrial robots is composed of a
variety of geometric and non-geometric factors, where the
linkage deformations and joint deformations of robots caused
by external loads need to be considered in most cases. For most
industrial robots, the joint deformation caused by inadequate
joint stiffness is the main part, which results in the positioning
error. Thus, an important assumption is made that the
industrial robot is regarded as a rigid linkage and flexible joint
model, namely neglecting the linkage deflection caused by
external loads.
According to this assumption, each joint can be treated as an

elastic torsion spring that its elasticity coefficient is constant
(Wang et al., 2009), and the error which is introduced by the
insufficient stiffness is concretized as the joint angle error.
Thus, the total angle error can be expressed as

Du ¼ Du s 1Du p 1Du etc (1)

where Du s and Du p represent the joint angle error caused by the
joint stiffness and geometric factors, respectively. Du etc is the
error caused by other factors which is neglected.
For the error caused by geometric parameters, the

traditional DH parameters are not applicable when the axis 2
and axis 3 of the robot are nominal parallel. Thus, a
parameter b , the twist angle along direction y, is introduced.
Because of the installation error or other relative effects, an
angle Db 2 which is usually in a small scale is introduced
between the axis 2 and axis 3, which is along the direction of
y2 (according to the right hand rule), shown in Figure 2(a).

Figure 1 KR 500-3 robot and its coordinate system
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Table I Theoretical DH parameters of KR 500-3

link i u i �ð Þ di (mm) ai-1 (mm) @i�1 �ð Þ u i �ð Þ
1 u 1(0) d1(1045) 0 0 �185� 185
2 u 2(�90) 0 a1(500) �90 �130� 20
3 u 3(0) 0 a2(1300) 0 �100� 144
4 u 4(0) d4(1025) a3(�55) �90 �350� 250
5 u 5(0) 0 0 90 �120� 120
6 u 6(0) d6 0 �90 �350� 350
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The xi, yi and zi represent the coordinate direction. Instead of
Dd2, the error of the joint distance which is set as Dd2 = 0
under the condition, the Db 2 is used to describe this
deviation. Da2 is a distance deviation between axis z2 and z3
along the direction of x2. Da2 is the angle deviation between
axis z2 and z3 around the direction of x2.
When the positioning deviation is under measurement, the

robot basic coordinate system (O-xagvyagvzagv) is established
that aims to overlap with the actual basic coordinate system
(O-xwywzw). But it is impossible to make them coincident based
on the existed technologies, which depends on the positioning
accuracy and measurement accuracy. The error is shown as
Figure 2(b). Thus, coordinate transformations are constructed,
where DTaw and DTw1 represent the transformation from the
basic coordinate system to the actual base coordinate system
and the transformation from the real robot base coordinate to
the coordinate fixed to the axis 1(O-x1y1z1), respectively. To
simplify the model, the error transformations can be expressed
as:

DTa1 ¼ DTaw � DTw1 ¼ trans y0;Dty0ð Þ � rot yagv;Db 0ð Þ � DTw1

(2)

DTw1 ¼ rot x;Da0ð Þ � trans x;Da0ð Þ � rot z;Du 1ð Þ � trans z;Dd1ð Þ
(3)

where the six parameters describing the error are Dty0, Db 0,
Da0, Da0, Du 1 and Dd1. Among these parameters, Dty0
expresses the distance offset from the base coordinate to the
actual robot coordinate system in the base coordinate system
along the axis y0. Db 0 expresses the angle deviation from zagv to
axis z1 measured by zagv. Other four parameters are defined
according to the rule of DHparameter.

3.2 Geometric and non-geometric parametermodel of
positional error
Considering both geometric and non-geometric parameters,
the total number of the robot error parameters is 33, which
includes 27 geometric parameters and 6 stiffness parameters.
For the specific KUKA KR500-3 robot, its error parameters
are listed in Table II. Notably particularly, it is necessary to
eliminate non-independent variables before calculating
because of the correlation among parameters.

4. The parameter identification model
considering joint stiffness

According to the kinematic model, when the joint angle u is
known, the nominal position is defined as:

P ¼ F a; d;a; uð Þ (4)

where a is the joint deviation, d is the joint distance, and a is the
joint twist angle. Meanwhile, considering the errors from both
geometric and non-geometric parameters, the actual position is
expressed as:

P
0 ¼ F a1Da; d1Dd;a1Da; u 1Du ;Db ;Dty0;Dtdxð Þ

(5)

Thus, the positioning error of robot can be expressed as:

DP ¼ P
0�P (6)

To simplify the expression into the linear equation when the
involved parameters are relatively small, this error can be
represented as:

Figure 2 Schematic of the error. O-xagvyagvzagv: the constructed base coordinate system, O-xwywzw: the actual world coordinate system, O-x1y1z1: the
coordinate system of fixed axis 1 of robot
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DP ¼ J � DQ ¼ J � DQs 1DQpð Þ ¼ J1 � Du s 1 J � DQp (7)

In this equation, J is the Jacobian matrix which is the derivative
of the tool center point (TCP) of the robot with respect to
geometric parameters. And J1(3�6) is a part of the J which
includes the first six columns. DQ, DQp and DQs are
respectively expressed as:

DQ ¼ Da;Dd;Da;Du p 1Du s;Db ;Dy0;Dtx½ �T (8)

DQp ¼ Da;Dd;Da;Du p;Db ;Dy0;Dtx½ �T (9)

DQs ¼ 0;0;0;Du s;0;0; 0½ �T (10)

In the state of static equilibrium, the relationship between the
external force of robot and the joint force is:

C ¼ JTf Ff (11)

where C and Ff represent the external force and joint force,
respectively. Ff contains both forces and torques, in the form as
[Fx, Fy, Fz, Tx, Ty, Tz]

T, which are measured under the force
coordinate system. Jf is the 6� 6 Jacobian matrix of the robot,
calculated by using the differential transformation method. It
describes the linear relationship between the velocity of TCP
and the corresponding joint speed. With the relationship
between the external force of robot and the joint force, the error
Du s can be represented as:

Du s ¼ K�1
u C ¼ K�1

u JTf Ff ¼ diag JTf Ff

� �
� Cu (12)

where Ku and Cu are the stiffness matrix and the joint
adaptation vector, respectively, which are expressed as:

Ku ¼ diag ku 1; ku 2; ku 3; ku 4; ku 5; ku 6½ � (13)

Cu¼ ½1=ku 1 1=ku 2 1=ku 3 1=ku 4 1=ku 5 1=ku 6�T (14)

Substituting (12) into (7), the absolute positional error is
obtained as:

DP ¼ A �X (15)

where

A ¼ J J1 � diag JTf Ff

� �h i
;X ¼ dQp Cu½ �T (16)

When the measuring points are in the number of N, the error
can be expressed as:

DP1;DP2; � � � ;DPN½ �T ¼ A1;A2; � � � ;AN½ �T �X (17)

Using the least square method, the least square solution of (15)
is obtained, and the iterationmakesDP verge to 0.

5. Experiment

To test the performance of the proposed model, an experiment is
developed on KUKA KR500-3 type robot with an end effector
which is 1103.58N, shown as Figure 3. The absolute position of
TCP is measured by laser tracker. The flange coordinate system
is translated to the center of the gravity of end effector, then the
force coordinate system is created and the vector Ff is defined
upon it. Therefore, the value of the vector Ff changes with the
posture of tool coordinate system. One thing should be noted is
that the influence from self-weight is not considered.

Table II The Error parameters of KR 500-3

link i Joint angleu i �ð Þ
Joint distance

di mmð Þ
Joint deviation distance

ai�1 mmð Þ
Joint twist angle

@i�1 �ð Þ
y-axis torsion angle

Db i �ð Þ

Structure Parameters
1 u 1 1Du p1 1Du s1 d1 1Dd1 Da0 D@0 0
2 u 2 1Du p2 1Du s2 0 a1 1Da1 D@1 � 90� Db 2

3 u 3 1Du p3 1Du s3 Dd2 a2 1Da2 D@2 0
4 u 4 1Du p4 1Du s4 d4 1Dd4 a3 1Da3 D@3 � 90� 0
5 u 5 1Du p5 1Du s5 Dd5 Da4 D@4 1 90� 0
6 u 6 1Du 6 DA;Du 6sð Þ d6 1Dd6 Dtdzð Þ Da5 D@5 � 90� 0
Tool Coordinate
System tdx 1Dtdx tdy 1Dtdy A1DA
Positional Deviation Dty0 Db 0

Figure 3 The experiment equipment
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Twenty groups of joint positions are selected and converted
based on robot joint coordinates. Then, the converted
locations are sent to robot and their actual positions are
measured, which are listed in Table III. To guarantee the
accuracy, each point is measured 5 times after the robot
arrives at the position. The measured data are divided into
two groups, where the data of the first 15 points are used for
the construction of the model and the data of the last 5
points are used for testing the validity of the robot.
Substituting the results in Table III to equation (17) and
setting the iteration termination condition as:

X15
i¼1

����Dpxi
����1

����Dpyi
����1

����Dpzi
���� < 0:00001;

it can be calculated byMATLAB that rA= 33. Thus, thematrix
A is column full rank, which means there are 33 independent
variables. Therefore, it’s not necessary to remove relevant
variables.
To verify that considering joint stiffness can improve the

accuracy of parameter identification, the compared experiment
is taken which only considers 27 geometric parameters without

the joint stiffness. Using the proposed model to iteratively
calculate, the results show thatDP of both considering and non-
considering joint stiffness verges to 0. The results of
considering the stiffness and not considering the stiffness are
shown in theTable IV.
To modify the data of last five groups in Table III, the

results in Table IV are used. The comparison between
theoretical data and modified data is shown in Figure 4. It is
clear that the results calculated by the model considering the
joint stiffness have smaller errors along all three directions
than the non-considered one, which means the modified
data are closer to the actual value where the error can be
within 0.5mm. Thus, with the loads, the model considering
the joint stiffness can improve the absolute positioning
accuracy remarkably. Moreover, from the figure, the results
from the model not considering joint stiffness have larger
differences, indicating the bad stability. On the contrary, the
results from the model considering joint stiffness are more
stable, having smaller differences in different positions. Also
according to the calculation of the standard deviation, the
model considering joint stiffness has better stability and
smaller volatility.

Table III The position of measured points

No. u 1
�ð Þ u 2

�ð Þ u 3
�ð Þ u 4

�ð Þ u 5
�ð Þ u 6

�ð Þ px mmð Þ py mmð Þ pz mmð Þ Fx Nð Þ Fy Nð Þ Fz Nð Þ
1 51.8876 �64.1974 31.2652 180.8670 �34.7215 �319.4809 501.2187 1,460.3168 2,650.7974 486.858 570.254 16.742
2 62.9244 �3.5251 55.0468 287.8476 �79.8006 �112.4795 �1,934.2742 �929.401 106.1919 �489.996 �472.616 314.703
3 47.7290 �4.8094 31.0728 314.3727 19.6290 �50.3342 747.1197 642.7241 �1,089.1321 �698.257 138.962 235.853
4 156.4787 �86.9572 72.1386 �204.8011 �54.2309 �152.7702 905.4033 �1,098.991 576.2688 65.627 745.481 49.516
5 �102.3094 �36.0818 26.1144 �240.1487 �103.8645 �201.4592 �686.2284 �319.5266 605.3495 355.361 �224.578 �621.115
6 73.5625 �40.5295 135.3407 130.5171 58.1248 213.9446 �52.3411 1,620.4519 58.9349 �721.377 �197.866 54.447
7 �92.7150 �46.4446 �44.3108 �270.1097 �58.6449 �46.6023 �229.7357 �684.7827 3,295.2156 650.937 �344.503 �141.769
8 �133.7822 0.4666 �70.4760 16.8939 �13.1323 257.8677 117.3119 �2,449.8263 �416.5125 198.759 494.390 �527.801
9 37.7173 �85.7690 �69.5721 20.1789 42.8175 �72.3633 �2,003.7123 �287.7133 441.2528 269.119 �694.934 �84.511
10 �17.5266 �78.1744 �80.2595 240.1580 �32.0960 178.9611 16.3885 992.646 984.5409 �253.999 701.855 �73.375
11 �14.5080 �106.5119 �1.2184 �10.0725 53.8855 �68.6336 �329.3199 �2,061.7682 382.5754 370.037 �6.172 2.114
12 56.9236 10.4257 8.9328 �70.8515 �24.0067 205.1619 �721.8295 �1,003.226 1,610.0954 6.102 �2.368 �3.662
13 95.0054 �31.5089 �10.2038 114.0017 41.8188 169.6263 1,200.1913 1,132.176 1,346.6274 �2.207 4.649 �5.456
14 �52.6484 �55.1765 81.9804 160.4365 46.5228 �81.5320 162.3543 375.1391 �829.4882 �5.592 �1.198 �4.853
15 56.9464 �32.3973 50.5464 13.3349 �13.1544 �188.8474 2,369.8822 559.102 1,691.4481 6.768 �1.144 �3.023
16 �16.2587 �120.6932 53.9811 23.6404 59.1152 18.2717 �101.2094 786.2615 3,343.3189 5.701 �2.228 �4.334
17 �147.3823 �85.2634 �78.0664 �273.5921 �117.5192 160.7966 298.3035 384.7125 120.5957 6.134 �3.939 1.761
18 183.2942 �123.0473 �80.2696 228.0662 �108.3726 145.0774 316.7298 �79.8154 293.6327 �6.935 �2.118 �1.916
19 �62.1257 �54.1858 89.6467 �113.3316 40.2999 196.9639 237.0330 �498.1911 548.5982 2.609 1.272 �6.915
20 �74.9817 �15.7861 120.8529 �144.2189 24.8323 �148.4161 914.4789 63.7062 725.0378 �6.257 �2.565 3.244

Table IV Calculated error parameters

i D@i�1=
�ð Þ Du i=

�ð Þ Db i�1=
�ð Þ Ddi= mmð Þ Dai�1= mmð Þ ku i=

�ð Þ others

1 0.9151/0.9147 0.8166/0.8067 0.6793/0.6643 0.4163/1.3581 1.0858/1.0741 3.6122e9 Dty0
2 �0.7911/�0.7953 0.9048/0.9282 / / 0.9734/1.0467 2.6513e9 0.8775/0.8277
3 �0.9605/�0.9557 0.9412 0.9346/0.9285 0.4891/0.6767 �0.4349/�0.2737 3.5621e9 Dtdx
4 0.6593/0.6565 0.9105/0.9554 / �0.9680/�1.0116 0.8070/0.9041 2.6359e9 0.7310/0.5475
5 0.0364/0.0279 0.9709 / 0.9670/0.2143 0.1000/�0.2137 1.3969e9
6 �0.8443/�0.8072 0.1014/0.0731 / �0.1562/0.2093 0.3897/0.4632 1.3302e8

Note: Considered stiffness/not considered
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6. Conclusion

The parameter identification is an important part of robot
calibration, and an unneglectable positional error during
calibration is the compliance error. To improve the positional
accuracy, this study integrates the joint stiffness parameter into
the geometric parameter identification model and proposes a
more accurate model. To test the accuracy and performance of
the proposed model, a calibration experiment on KUKA robot
KR500-3 is performed, using mathematical model to process
the data which are acquired via laser tracker. Comparing two
kinds of results which one considers the joint stiffness and the
other does not, the result indicates that the model considering
joint stiffness can better reflect the actual condition of robot
with better stability.
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Figure 4 The comparison between actual data and rectified data (mm).—considering joint stiffness, - - - -not considering joint stiffness
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