Search results

1 – 10 of 16
Article
Publication date: 16 January 2024

Amin Reihani, Fatemeh Shaki and Ala Azari

Acrylamide (AA) is predominantly used as a synthetic substance within various industries. However, AA is also recognized as a carcinogen. Zinc oxide nanoparticles (ZnO-NPs) are…

Abstract

Purpose

Acrylamide (AA) is predominantly used as a synthetic substance within various industries. However, AA is also recognized as a carcinogen. Zinc oxide nanoparticles (ZnO-NPs) are becoming increasingly attractive as medical agents. However, to the knowledge, the effects of ZnO-NPs on preventing cytotoxicity with AA have not been reported. Therefore, this study aims to determine the protective effects of ZnO-NPs against the cytotoxicity caused by AA.

Design/methodology/approach

MTT assay was used to determine the cytotoxicity. Reactive oxygen species (ROS) formation, carbonyl protein, malondialdehyde (MDA) and glutathione (GSH) were measured and analyzed statistically.

Findings

The findings observed that the presence of 200 µM AA led to a substantial reduction in cell viability (p < 0.001). However, ZnO-NPs restored cell viability at 50 and 100 µM concentrations (p = 0.0121 and p = 0.0011, respectively). The levels of ROS were significantly reduced (p = 0.001 and p = < 0.001) to 518 ± 47.57 and 364 ± 47.79, respectively, compared to the AA group. The levels of GSH were significantly increased (p = 0.004 and p = 0.002) to 16.9 ± 1.3 and 17.6 ± 0.5, respectively, compared to the AA group. The levels of MDA were significantly decreased (p = 0.005, p < 0.001 and p < 0.001) when compared to the AA group, as were the levels of carbonyl protein (p = 0.009 and p < 0.002) in comparison to the AA group.

Originality/value

In summary, the outcomes of this research indicate that ZnO-NPs played a role in inhibiting AA-induced oxidative stress and cytotoxicity.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 14 June 2022

Sunil Tyagi

This study aims to measure the global research landscape of the National Institute of Pharmaceutical Education and Research (NIPER) of India on a set of quantitative and…

Abstract

Purpose

This study aims to measure the global research landscape of the National Institute of Pharmaceutical Education and Research (NIPER) of India on a set of quantitative and qualitative metrics in terms of research output toward exploring research trends and give an overview of collaborative practices by researchers of NIPERs.

Design/methodology/approach

The present study has selected the Scopus database as a tool to retrieve potential publications of studied NIPERs during the last 12 years (2010–2021). NIPER-Mohali, NIPER-Hyderabad, NIPER-Ahmedabad, NIPER-Guwahati and NIPER-Kolkata have been selected for the study. The study has adopted a comprehensive search strategy to extract 3,926 publications data. VOS viewer 1.6.17, BibExcel and Microsoft Excel were used for data analysis and visualization.

Findings

The global scientific research output of NIPERs accrued 3,926 publications with an average of 327 publications per year. The retrieved publications fetched a total of 67,772 citations with an average citation impact of 17.26. There observed a steady growth of publications from 168 to 509 registered with an average growth rate of 18.44%. The mean relative growth rate and doubling time of research output are 0.26 and 2.94. The authorship patterns explore collaborative trends as most of the publications were published by multiple authors (99.39%). NIPERs have expanded their outreach to collaborate with the USA, Malaysia, Saudi Arabia, Australia and the UK to collaborate on research and regulatory reforms exhibits in the USA as a major contributor.

Originality/value

The present study is the first effort to evaluate the global research productivity of NIPERs and assess the current research trends on a set of quantitative and qualitative metrics to provide some insights into the complex dynamics of research productivity. The study’s outcome may help to identify the current research progress of NIPERs at the global level.

Details

Library Hi Tech, vol. 42 no. 1
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 20 May 2024

Kimia Abedi, Hamid Keshvari and Mehran Solati-Hashjin

This study aims to develop a simplified bioink preparation method that can be applied to most hydrogel bioinks used in extrusion-based techniques.

Abstract

Purpose

This study aims to develop a simplified bioink preparation method that can be applied to most hydrogel bioinks used in extrusion-based techniques.

Design/methodology/approach

The parameters of the bioprinting process significantly affect the printability of the bioink and the viability of cells. In turn, the bioink formulation and its physicochemical properties may influence the appropriate range of printing parameters. In extrusion-based bioprinting, the rheology of the bioink affects the printing pressure, cell survival and structural integrity. Three concentrations of alginate-gelatin hydrogel were prepared and printed at three different flow rates and nozzle gauges to investigate the print parameters. Other characterizations were performed to evaluate the hydrogel structure, printability, gelation time, swelling and degradation rates of the bioink and cell viability. An experimental design was used to determine optimal parameters. The analyses included live/dead assays, rheological measurements, swelling and degradation.

Findings

The experimental design results showed that the hydrogel flow rate substantially influenced printing accuracy and pressure. The best hydrogel flow rate in this study was 10 ml/h with a nozzle gauge of 18% and 4% alginate. Three different concentrations of alginate-gelatin hydrogels were found to exhibit shear-thinning behavior during printing. After seven days, 46% of the structure in the 4% alginate-5% gelatin sample remained intact. After printing, the viability of skin fibroblast cells for the optimized sample was 91%.

Originality/value

This methodology offers a straightforward bioink preparation method applicable to the majority of hydrogels used in extrusion-based procedures. This can also be considered a prerequisite for cell printing.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Article
Publication date: 19 January 2024

Natthawut Daoset, Samroeng Inglam, Sujin Wanchat and Nattapon Chantarapanich

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of…

Abstract

Purpose

This paper aims to investigate the influence of post-curing temperature, post-curing time and gamma ray irradiation dose upon the tensile and compressive mechanical properties of the medical graded vat photopolymerization parts.

Design/methodology/approach

Medical graded vat photopolymerization specimens, made from photopolymer resin, were fabricated using bottom-up vat photopolymerization machine. Tensile and compressive tests were conducted to assess the mechanical properties. The specimens were categorized into uncured and post-curing groups. Temperature post-processing and/or gamma irradiation exposure were for post-curing specimens. The post-curing parameters considered included temperature levels of 50°C, 60°C and 70°C, with 1, 2, 3 and 4 h periods. For the gamma irradiation, the exposure doses were 25, 50, 75 and 100 kGy.

Findings

Post-curing improved the mechanical properties of medical graded vat photopolymerization parts for both tensile and compressive specimens. Post-curing temperature greater than 50°C or a prolonged post-curing period of more than 1 h made insignificant changes or deterioration in mechanical properties. The optimal post-curing condition was therefore a 50°C post-curing temperature with 1 h post-curing time. Exposure to gamma ray improved the compressive mechanical properties, but deteriorated tensile mechanical properties. Higher gamma irradiation doses could decrease the mechanical properties and also make the part more brittle, especially for doses more than 25 kGy.

Originality/value

The obtained results would be beneficial to the medical device manufacturer who fabricated the invasive temporary contact personalized surgical instruments by vat photopolymerization technique. In addition, it also raised awareness in excessive gamma sterilization in the medical graded vat photopolymerization parts.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2023

U. Gianfranco Spizzirri, Paolino Caputo, Rosa Nicoletti, Pasquale Crupi, Fabrizio D'Ascenzo, Cesare Oliverio Rossi, Maria Lisa Clodoveo, Francesca Aiello and Donatella Restuccia

This study aims to investigate unripe carob pod as a source of antioxidant molecules useful in the eco-friendly synthesis of a gelatin conjugate. This one was involved in the…

Abstract

Purpose

This study aims to investigate unripe carob pod as a source of antioxidant molecules useful in the eco-friendly synthesis of a gelatin conjugate. This one was involved in the preparation of gummies able to produce remarkable human health benefits.

Design/methodology/approach

Eco-friendly strategies (ultrasound-assisted extraction, low temperatures and eco-friendly solvents) were employed in the extraction of active molecules. Antioxidant molecules were involved in the grafting reaction with gelatin chains (ascorbic acid/hydrogen peroxide couple as initiator system). Gelatin conjugate represents a useful material able to prepare gummies with remarkable rheological and antioxidant performances over time.

Findings

Experimental results confirmed that the green approach allowed the achievement of extracts with remarkable antioxidant properties due to the presence of phenolic moieties. Gelatin conjugate synthesis preserved these functionalities, usefully exploited in the preparation of gummies with significant structural and biological features.

Originality/value

Compared to the literature data the preparation of the gummies with outstanding biological properties was performed by employing functional gelatin synthesized by an eco-friendly approach.

Details

British Food Journal, vol. 126 no. 1
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 2 January 2023

Eslam Taha, Mostafa Attia Mohie, Mahmoud Sayed Korany, Naglaa Aly, Alaa Ropy and Mosaad Negem

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation…

Abstract

Purpose

This study aims to investigate profoundly the protection of oil painting from deterioration using molybdenum trisulphide quantum dots (MoS3 QDs) against microbe, dirt accumulation and ultraviolet (UV) degradation.

Design/methodology/approach

The protection of painting against different deterioration factors necessitates the sustainable methods and advanced techniques. Scanning electron microscopy and transmission electron microscopy have been used to investigate the morphological structure of the painting and MoS3 QDs, respectively, and optical microscopy was used to examine antibacterial activity of MoS3 QDs towards different types of bacteria. To investigate the protection of painting against deterioration, the Fourier transform IR spectroscopy (FTIR) was used to investigate the paintings left in open air for a year. Chemical composition and crystal structure of MoS3 QDs have been studied using X-ray diffraction and X-ray photoelectron spectroscopy analysis, respectively.

Findings

The addition of MoS3 nanoparticles into painted coatings enhances the durability of linseed oil-based paintings toward UV ageing regarding the change in colour which confirmed by FTIR analysis. The protection of oil painting opposed to various deterioration factors was developed by involving of MoS3 QDs in the coating of the painting. Antibacterial effect of MoS3 QDs was tested against different types of bacteria such as Pseudomonas aeruginosa confirming that the MoS3 QDs involved in the coatings of oil paintings produces a high protection layer for the paintings against several microbial attacks. In addition, coatings containing MoS3 QDs reduce the accumulation of dirt on oil paintings when subjected to open air for a year.

Originality/value

The novel MoS3 QDs was used to form a protective and transparent coating layer for the oil painting to overcome the deterioration, displays the promising protection and can be applied for different oil paintings.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 April 2024

Xiaotong Zhang and Qiu Zhang

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of…

Abstract

Purpose

The purpose of this study is to develop a molecular imprinting electrochemical sensor for the specific detection of the anticancer drug amsacrine. The sensor used a composite of bacterial cellulose (BC) and silver nanoparticles (AgNPs) as a platform for the immobilization of a molecularly imprinted polymer (MIP) film. The main objective was to enhance the electrochemical properties of the sensor and achieve a high level of selectivity and sensitivity toward amsacrine molecules in complex biological samples.

Design/methodology/approach

The composite of BC-AgNPs was synthesized and characterized using FTIR, XRD and SEM techniques. The MIP film was molecularly imprinted to selectively bind amsacrine molecules. Electrochemical characterization, including cyclic voltammetry and electrochemical impedance spectroscopy, was performed to evaluate the modified electrode’s conductivity and electron transfer compared to the bare glassy carbon electrode (GCE). Differential pulse voltammetry was used for quantitative detection of amsacrine in the concentration range of 30–110 µM.

Findings

The developed molecular imprinting electrochemical sensor demonstrated significant improvements in conductivity and electron transfer compared to the bare GCE. The sensor exhibited a linear response to amsacrine concentrations between 30 and 110 µM, with a low limit of detection of 1.51 µM. The electrochemical response of the sensor showed remarkable changes before and after amsacrine binding, indicating the successful imprinting of amsacrine in the MIP film. The sensor displayed excellent selectivity for amsacrine in the presence of interfering substances, and it exhibited good stability and reproducibility.

Originality/value

This study presents a novel molecular imprinting electrochemical sensor design using a composite of BC and AgNPs as a platform for MIP film immobilization. The incorporation of BC-AgNPs improved the sensor’s electrochemical properties, leading to enhanced sensitivity and selectivity for amsacrine detection. The successful imprinting of amsacrine in the MIP film contributes to the sensor's specificity. The sensor's ability to detect amsacrine in a concentration range relevant to anticancer therapy and its excellent performance in complex sample matrices add significant value to the field of electrochemical sensing for pharmaceutical analysis.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

17

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 February 2024

Fatemeh Mollaamin and Majid Monajjemi

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate…

Abstract

Purpose

Bisphosphonate (BP) medications can be applied to prohibit the damage of bone density and the remedy of bone illnesses such as osteoporosis. As the metal chelating of phosphonate groups are nearby large with six O atoms possessing the high negative charge, these compounds are active toward producing the chelated complexes through drug design method. BP agents have attracted much attention for the clinical treatment of some skeletal diseases depicted by enhancing of osteoclast-mediated bone resorption.

Design/methodology/approach

In this work, it has been accomplished the CAM-B3LYP/6–311+G(d, p)/LANL2DZ to estimate the susceptibility of SWCNT for adsorbing alendronate, ibandronate, neridronate and pamidronate chelated to two metal cations of 2Mg2+, 2Ca2+, 2Sr2+ through nuclear magnetic resonance and thermodynamic parameters. Therefore, the data has explained that the feasibility of using SWCNT and BP agents becomes the norm in metal chelating of drug delivery system which has been selected through alendronate → 2X, ibandronate → 2X, neridronate → 2X and pamidronate → 2X (X = Mg2+/Ca2+/Sr2+) complexes.

Findings

The thermodynamic results have exhibited that the substitution of 2Ca2+ cation by 2Sr2+ cation in the structure of bioactive glasses can be efficient for treating vertebral complex fractures. However, it has been observed the most fluctuation in the Gibbs free energy for BPs → 2Sr2+ at 300 K. Furthermore, Monte Carlo simulation has resulted by increasing the dielectric constant in the aqueous medium can enhance the stability and efficiency of BP drugs for preventing the loss of bone density and treating the osteoporosis.

Originality/value

According to this research, by incorporation of chelated 2Mg2+, 2Ca2+ and 2Sr2+ cations to BP drugs adsorbed onto (5, 5) armchair SWCNT, the network compaction would increase owing to the larger atomic radius of Sr2+ cation rather than Ca2+ and Mg2+, respectively.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 16