Search results

1 – 10 of 20
Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1119

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 10 January 2024

Yifan Shi, Yuan Wang, Xiaozhou Liu and Ping Wang

Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth…

Abstract

Purpose

Straightness measurement of rail weld joint is of essential importance to railway maintenance. Due to the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a 5-m wavelength range, leaving a significant knowledge gap in this field.

Design/methodology/approach

In this study, the authors used the well-established inertial reference method (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methods have been applied in different types of rail straightness measurement trollies, respectively. These instruments were tested in a high-speed rail section within a certain region of China. The test results were ultimately validated through using traditional straightedge and feeler gauge methods as reference data to evaluate the rail weld joint straightness within the 5-m wavelength range.

Findings

The research reveals that IR-method and MCR-method produce reasonably similar measurement results for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy for wavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed, carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.

Originality/value

The research compare two methods’ measurement effects in a longer wavelength range and demonstrate the superiority of MCR-method.

Open Access
Article
Publication date: 17 November 2023

Matthew Ikuabe, Clinton Aigbavboa and Ernest Kissi

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which…

Abstract

Purpose

In most developing countries, the delivery of construction project is still characterised by inefficiencies resulting from the use of outdated methods and techniques, which retards project performance. Hence, the call for the implementation of innovative technologies such as humanoids in the execution of construction projects as it has been proven to be very effective in other sectors while improving productivity and quality of work. Consequently, this study looks at how humanoids can be used in the construction industry and what benefits they can bring.

Design/methodology/approach

The study employed a quantitative approach underpinned in post-positivist philosophical view using questionnaire as the instrument for data collection. The target respondents were construction professionals, and purposive sampling was used, while a response rate of 62.5% was gotten. The methods of data analysis were mean item score, standard deviation and one-sample t-test.

Findings

The findings revealed that humanoids can be used in progress tracking, auto-documentation and inspection and surveillance of tasks in construction activities. Also, the most important benefits of using humanoids in construction work were found to be shorter delivery times, fewer injuries and more accurate work.

Practical implications

The outcome of the study gives professionals and relevant stakeholders in construction and other interested parties' information about the areas where humanoids can be used and their benefits in construction.

Originality/value

The novelty of this study is that it is a pioneering study in South Africa on humanoids' usage in the construction industry. Also, it expands the existing borderline of the conservation of construction digitalisation for enhanced project execution.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 15 January 2024

Marcello Braglia, Francesco Di Paco, Roberto Gabbrielli and Leonardo Marrazzini

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes…

731

Abstract

Purpose

This paper presents a new and well-structured framework that aims to assess the current environmental impact from a Greenhouse Gas (GHG) emissions perspective. This tool includes a new set of Lean Key Performance Indicators (KPIs), which translates the well-known logic of Overall Equipment Effectiveness in the field of GHG emissions, that can progressively detect industrial losses that cause GHG emissions and support decision-making for implementing improvements.

Design/methodology/approach

The new metrics are presented with reference to two different perspectives: (1) to highlight the deviation of the current value of emissions from the target; (2) to adopt a diagnostic orientation not only to provide an assessment of current performance but also to search for the main causes of inefficiencies and to direct improvement implementations.

Findings

The proposed framework was applied to a major company operating in the plywood production sector. It identified emission-related losses at each stage of the production process, providing an overall performance evaluation of 53.1%. The industrial application shows how the indicators work in practice, and the framework as a whole, to assess GHG emissions related to industrial losses and to proper address improvement actions.

Originality/value

This paper scrutinizes a new set of Lean KPIs to assess the industrial losses causing GHG emissions and identifies some significant drawbacks. Then it proposes a new structure of losses and KPIs that not only quantify efficiency but also allow to identify viable countermeasures.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Open Access
Article
Publication date: 12 May 2023

Olivia McDermott, Kevin ODwyer, John Noonan, Anna Trubetskaya and Angelo Rosa

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to…

79482

Abstract

Purpose

This study aims to improve a construction company's overall project delivery by utilising lean six sigma (LSS) methods combined with building information modelling (BIM) to design, modularise and manufacture various building elements in a controlled factory environment off-site.

Design/methodology/approach

A case study in a construction company utilised lean six sigma (LSS) methodology and BIM to identify non-value add waste in the construction process and improve sustainability.

Findings

An Irish-based construction company manufacturing modular pipe racks for the pharmaceutical industry utilised LSS to optimise and standardise their off-site manufacturing (OSM) partners process and leverage BIM to design skids which could be manufactured offsite and transported easily with minimal on-site installation and rework required. Productivity was improved, waste was reduced, less energy was consumed, defects were reduced and the project schedule for completion was reduced.

Research limitations/implications

The case study was carried out on one construction company and one construction product type. Further case studies would ensure more generalisability. However, the implementation was tested on a modular construction company, and the methods used indicate that the generic framework could be applied and customized to any offsite company.

Originality/value

This is one of the few studies on implementing offsite manufacturing (OSM) utilising LSS and BIM in an Irish construction company. The detailed quantitative benefits and cost savings calculations presented as well as the use of the LSM methods and BIM in designing an OSM process can be leveraged by other construction organisations to understand the benefits of OSM. This study can help demonstrate how LSS and BIM can aid the construction industry to be more environmentally friendly.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 3 August 2023

Celestin Mayombe

There is a global concern about the effectiveness of vocational education and training (VET) programmes in developing job-related skills and competencies for real-world…

1714

Abstract

Purpose

There is a global concern about the effectiveness of vocational education and training (VET) programmes in developing job-related skills and competencies for real-world environments for disadvantaged and unemployed youths. Experiential learning (EL) is a major component of VET programmes. This article aims to examine the effects of facilitating VET through EL theory to promote youths' skills acquisition. The study looks at the effects of material resources on the use of experiential learning theory (ELT), the types of EL and the contribution of ELT to VET programmes.

Design/methodology/approach

The research design mainly entails a qualitative research design and research method to allow the researcher to view the reality as is experienced from the inside out by the trainees and training centre managers on important data for a thorough understanding. The study participants were 512 young trainees who completed different training courses from the VET programmes and 24 centre managers in the KwaZulu-Natal province of South Africa.

Findings

The findings reveal that the use of ELT in VET programmes helped the trainees to gain real-world skills, hence contributing to their empowerment in terms of work experience and competence for their future employment. Based on the findings, the study concludes that ELT is an effective instrument to promote VET programmes for disadvantaged and unemployed youths.

Practical implications

The practical and social implications of the findings are that, while disadvantaged youths cannot access and afford higher education, public and private sectors can remedy their situation by providing non-school-based technical and vocational training to help such youths enter the labour market. The findings will motivate the providers of skills development for unemployed youths to use ELT in designing course curricula, planning resources and directing teaching-learning approaches to help trainees to acquire skills and competencies to perform tasks close to real-work situations.

Social implications

The socio-economic implication of the article is that skills development plays an important role in poverty reduction. Investing in the skills development of citizens is vital to raise the incomes of poor groups and to reduce poverty (ILO, 2018). Although the causes of unemployment have also to do with economic factors in a country, skills development is an essential ingredient in developing capacities for labour market entry and increased income generation of a vulnerable group of people.

Originality/value

The article is significant because the study provides new insights into the use of ELT in VET programmes to improve their effectiveness in developing job-related skills and competencies for real-world environments for disadvantaged and unemployed youths. The study contributes to the body of knowledge by establishing a solid base for the evidence-informed practice of the effects of facilitating the VET programme through ELT to promote skills acquisition for the employment of unemployed and disadvantaged youths.

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 5 March 2024

Thanduxolo Elford Fana and Jane Goudge

In this paper, the authors examine the strategies used to reduce labour costs in three public hospitals in South Africa, which were effective and why. In the democratic era, after…

Abstract

Purpose

In this paper, the authors examine the strategies used to reduce labour costs in three public hospitals in South Africa, which were effective and why. In the democratic era, after the revelations of large-scale corruption, the authors ask whether their case studies provide lessons for how public service institutions might re-make themselves, under circumstances of austerity.

Design/methodology/approach

A comparative qualitative case study approach, collecting data using a combination of interviews with managers, focus group discussions and interviews with shop stewards and staff was used.

Findings

Management in two hospitals relied on their financial power, divisions between unions and employees' loyalty. They lacked the insight to manage different actors, and their efforts to outsource services and draw on the Extended Public Works Program failed. They failed to support staff when working beyond their scope of practice, reducing employees' willingness to take on extra responsibilities. In the remaining hospital, while previous management had been removed due to protests by the unions, the new CEO provided stability and union–management relations were collaborative. Her legitimate power enabled unions and management to agree on appropriate cost cutting strategies.

Originality/value

Finding an appropriate balance between the new reality of reduced financial resources and the needs of staff and patients, requires competent unions and management, transparency and trust to develop legitimate power; managing in an authoritarian manner, without legitimate power, reduces organisational capacity. Ensuring a fair and orderly process to replace ineffective management is key, while South Africa grows cohorts of competent managers and builds managerial experience.

Details

Journal of Health Organization and Management, vol. 38 no. 9
Type: Research Article
ISSN: 1477-7266

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Access

Only Open Access

Year

Last 6 months (20)

Content type

1 – 10 of 20