Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 15 March 2023

Xiao Fan Zhao, Andreas Wimmer and Michael F. Zaeh

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process…

1053

Abstract

Purpose

The purpose of this paper is to demonstrate the impact of the welding sequence on the substrate plate distortion during the wire and arc additive manufacturing (WAAM) process. This paper also aims to show the capability of finite element simulations in the prediction of those thermally induced distortions.

Design/methodology/approach

An experiment was conducted in which solid aluminum blocks were manufactured using two different welding sequences. The distortion of the substrates was measured at predefined positions and converted into bending and torsion values. Subsequently, a weakly coupled thermo-mechanical finite element model was created using the Abaqus simulation software. The model was calibrated and validated with data gathered from the experiments.

Findings

The results of this paper showed that the welding sequence of a part significantly affects the formation of thermally induced distortions of the final part. The calibrated simulation model was able to capture the different distortion behavior attributed to the welding sequences.

Originality/value

Within this work, a simulation model was developed capable of predicting the distortion of WAAM parts in advance. The findings of this paper can be used to improve the design of WAAM welding sequences while avoiding high experimental efforts.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2021

Yu Luo, Xiangdong Jiao, Zewei Fang, Shuxin Zhang, Xuan Wu, Dongyao Wang and Qin Chu

This paper aims to propose a diverless weld bead maintenance welding technology to prevent the leakage of subsea oil and gas pipeline and solve the key problems in the maintenance…

Abstract

Purpose

This paper aims to propose a diverless weld bead maintenance welding technology to prevent the leakage of subsea oil and gas pipeline and solve the key problems in the maintenance of subsea pipeline.

Design/methodology/approach

Based on the analysis of the cross-section of the fillet weld, the multi-layer and multi-pass welding path planning of the submarine pipeline sleeve fillet weld is studied, and thus a multi-layer and multi-pass welding path planning strategy is proposed. A welding seam filling method is designed, and the end position of the welding gun is planned, which provides a theoretical basis for the motion control of the maintenance system.

Findings

The trajectory planning and adjustment of multi-layer and multi-pass fillet welding and the motion stability control of the rotating mechanism are realized.

Research limitations/implications

It provides the basis for the prototype design of the submarine pipeline maintenance and welding robot system, and also lays the foundation for the in-depth research on the intelligent maintenance system of submarine pipeline.

Originality/value

The maintenance of diverless subsea pipeline is a new type of maintenance method, which can solve the problem of large amount of subsea maintenance work with high efficiency.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 1939

Kurt Queitsch

WHEN metal parts are exposed to alterations of temperature, their outer dimensions undergo a change. With rising temperatures metals expand, with falling temperatures they…

Abstract

WHEN metal parts are exposed to alterations of temperature, their outer dimensions undergo a change. With rising temperatures metals expand, with falling temperatures they contract. If different temperatures exist within one and the same metal member, internal stresses begin to act, causing a deformation of the component and thus setting up internal strains. Cracks, buckling, distortion and shrinkage are the external results of such strains.

Details

Aircraft Engineering and Aerospace Technology, vol. 11 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 26 August 2014

Chengdong Yang, Zhen Ye, Yuxi Chen, Jiyong Zhong and Shanben Chen

This paper aims to solve the problem that the changing of groove size and assembly gap would affect the precision of the multi-pass path planning and the welding quality and…

Abstract

Purpose

This paper aims to solve the problem that the changing of groove size and assembly gap would affect the precision of the multi-pass path planning and the welding quality and realize the automatic welding of a thick plate.

Design/methodology/approach

First, a double-sided double arc welding (DSAW) system with a self-designed passive vision sensor was established, then the image of the groove was captured and the characteristic parameters of groove were extracted by image processing. According to the welding parameters and the extracted geometry size, multi-pass path planning was executed by the DSAW system.

Findings

A DSAW system with a self-designed passive vision sensor was established which can realize the welding thick plate by double-sided double arc by two robots. The clear welding image of the groove was acquired, and an available image processing algorithm was proposed to accurately extract the characteristic parameters of the groove. According to the welding parameters and the extracted geometry size, multi-pass path planning can be executed by the DSAW system automatically.

Originality/value

Gas metal arc welding is used for root welding and filler passes in DSAW. Multi-pass path planning for thick plate by Double-sided Double Arc Welding (DSAW) based on vision sensor was proposed.

Details

Sensor Review, vol. 34 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 1940

Kurt Queitsch

The formation of internal stresses is mainly caused by contraction of the material. As the magnitude of shrinkage is dependent upon many factors, it cannot be predicted with…

Abstract

The formation of internal stresses is mainly caused by contraction of the material. As the magnitude of shrinkage is dependent upon many factors, it cannot be predicted with accuracy. Not only the technique and the rate of welding are of importance but also the material and the design. Finished welded components often show quite considerable reductions in their major dimensions. With larger welded structures, such as engine mountings and steel tube fuselages, which ought to have certain dimensions absolutely accurate for assembly requirements, the contraction and the distortion duo to welding should be considered in every case.

Details

Aircraft Engineering and Aerospace Technology, vol. 12 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 7 October 2020

Liang Tian and Yu Luo

The purpose of this paper is to quantitatively investigate the effect of process parameters (including welding current, voltage and speed) and plate thickness on in-plane inherent…

262

Abstract

Purpose

The purpose of this paper is to quantitatively investigate the effect of process parameters (including welding current, voltage and speed) and plate thickness on in-plane inherent deformations in typical fillet welded joint; meanwhile, the plastic strains remaining in the weld zone are also analyzed under different influencing factors.

Design/methodology/approach

To achieve the purpose of this study, a thermal-elastic-plastic finite element (TEP FE) model is developed to analyze the thermal-mechanical behavior of the T-welded joint during the welding process. Experimental measurements have verified the validity of the established TEP FE model. Using the effective model, a series of numerical experiments are performed to obtain the inherent deformations under the conditions of different influencing factors, and then the calculation results are discussed based on the relevant data obtained.

Findings

Through numerical simulation analysis, it is found that the longitudinal and transverse inherent deformations decrease with the increase of welding speed and plate thickness, whereas as the nominal heat input increases, the inherent deformations increase significantly. The longitudinal shrinkage presents a quasi-linear and nonlinear distribution in the middle and end of the weld, respectively. The plastic strains in the cross section of the T-joint also vary greatly because of the process parameters and plate thickness, but the maximum value always appears near the location of the welding toe, which means that this point faces a relatively large risk of fatigue cracking. The inherent deformations are closely related to the plastic strains remaining in the weld zone and are also affected by many influencing factors such as process parameters and plate thickness.

Research limitations/implications

In this study, relatively few influencing factors such as welding current, voltage, speed and plate thickness are considered to analyze the inherent deformations in the T-welded joint. Also, these influencing factors are all within a certain range of parameters, which shows that only limited applicability can be provided. In addition, only in-plane inherent deformations are considered in this study, without considering the other two out-of-plane components of inherent deformations.

Originality/value

This study can help to expand the understanding of the relationship between the inherent deformations and its influencing factors for a specific form of the welded joint, and can also provide basic data to supplement the inherent deformation database, thereby facilitating further researches on welding deformations for stiffened-panel structures in shipbuilding or steel bridges.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1991

Michael G. Yocum

Most of the business of Koltanbar Engineering is designing large automated welding lines producing body assemblies. In the past, designing a welding station for one of these lines…

Abstract

Most of the business of Koltanbar Engineering is designing large automated welding lines producing body assemblies. In the past, designing a welding station for one of these lines was an extremely time‐consuming process requiring complicated sectional drawings at each welding point, which were stacked up to determine the gun configuration; intricate stick drawings of the robot's motion, and very tricky cycle time studies.

Details

Industrial Robot: An International Journal, vol. 18 no. 4
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 1 February 1978

S. Müller

In this report, accounts will be presented on the experience obtained from approximately 100 practical applications of industrial robots. The industrial robots used derive partly…

Abstract

In this report, accounts will be presented on the experience obtained from approximately 100 practical applications of industrial robots. The industrial robots used derive partly from the company's own production as well as from other domestic and foreign robot manufacturers.

Details

Industrial Robot: An International Journal, vol. 5 no. 2
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 1 April 2002

J. Norberto Pires, A. Loureiro, T. Godinho, P. Ferreira, B. Fernando and J. Morgado

Associating robot manipulators with industrial welding operations is common and maybe one of the most successful applications of industrial robots. Nevertheless, it is far from…

Abstract

Associating robot manipulators with industrial welding operations is common and maybe one of the most successful applications of industrial robots. Nevertheless, it is far from being a solved technological process, mainly because the welding process is not fully understood but also because robots are still at an early satge of development, being difficult to use and program by regular operators. This is also true for Human Machine Interfaces (HMI), which are not intuitive to use and are therefore unsatisfactory. In this paper we discuss these problems and present a system designed with the double objective of serving our R&D efforts on welding applications, but also our need to assist industrial partners working with welding setups. Frequently industrial partners are not happy with available commercial systems, requiring tailored solutions that could be adapted to several robots and robot controllers. The developed system is explained in some detail, and demonstrated using two test cases which reproduce two situations very common in industry: multi‐layer butt welding (used on big structures requiring very strong welds) and multi‐point fillet welding (used for example on structural pieces for the construction industry).

Details

Industrial Robot: An International Journal, vol. 29 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 2005

Stephen Mulligan, Geoff Melton, Ari Lylynoja and Keith Herman

Development and demonstration of an autonomous, mobile welding robot capable of fabricating large‐scale customised structures.

Abstract

Purpose

Development and demonstration of an autonomous, mobile welding robot capable of fabricating large‐scale customised structures.

Design/methodology/approach

An autonomous welding robot has been developed under the EC Framework V Growth program. The system comprises a global vision system for part location and orientation, and a robot transport vehicle (RTV) which carries a 6‐axis robot, robot controller, welding equipment, and local sensors at the welding torch. The RTV path, robot arm motion and weld process programming are performed automatically using sensors and specially customised simulation software.

Findings

The technology developed within the project was demonstrated, in November 2004, to be capable of identifying and welding large scale customised structures as found in the earth moving equipment and bridge fabrication industries.

Research limitations/implications

The project demonstrated that current sensor technology is capable of being applied successfully to autonomous robots, but further developments in sensor technology are required to improve accuracy and joint access.

Practical implications

The NOMAD concept of autonomous mobile robots provides an alternative solution to welding mass customised structures.

Originality/value

This project demonstrated, for the first time, the capability of autonomous robots to weld large scale customised structures.

Details

Industrial Robot: An International Journal, vol. 32 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 2000