Search results

1 – 10 of 18
Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Yini Wei, Guiqiang Diao and Zilun Tang

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in…

Abstract

Purpose

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in terms of articles meant to be worn, their prominence among devices and systems meant for cadence is overshadowed by electronic products such as accelerometers, wristbands and smart phones. Athletes and sports enthusiasts using knee sleeves should be able to track their performances and monitor workout progress without the need to carry other devices with no direct sport utility, such as wristbands and wearable accelerometers. The purpose of this study thus is to contribute to the broad area of wearable devices for cadence application by developing a cheap but effective and efficient stride measurement system based on a knee sleeve.

Design/methodology/approach

A textile strain sensor is designed by weft knitting silver-plated nylon yarn together with nylon DTY and covered elastic yarn using a 1 × 1 rib structure. The area occupied by the silver-plated yarn within the structure served as the strain sensor. It worked such that, upon being subjected to stress, the electrical resistance of the sensor increases and in turn, is restored when the stress is removed. The strip with the sensor is knitted separately and subsequently sewn to the knee sleeve. The knee sleeve is then connected to a custom-made signal acquisition and processing system. A volunteer was employed for a wearer trial.

Findings

Experimental results establish that the number of strides taken by the wearer can easily be correlated to the knee flexion and extension cycles of the wearer. The number of peaks computed by the signal acquisition and processing system is therefore counted to represent stride per minute. Therefore, the sensor is able to effectively count the number of strides taken by the user per minute. The coefficient of variation of over-ground test results yielded 0.03%, and stair climbing also obtained 0.14%, an indication of very high sensor repeatability.

Research limitations/implications

The study was conducted using limited number of volunteers for the wearer trials.

Practical implications

By embedding textile piezoresistive sensors in some specific garments and or accessories, physical activity such as gait and its related data can be effectively measured.

Originality/value

To the best of our knowledge, this is the first application of piezoresistive sensing in the knee sleeve for stride estimation. Also, this study establishes that it is possible to attach (sew) already-knit textile strain sensors to apparel to effectuate smart functionality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 December 2023

Younghwan Kim and Hyunseung Lee

This study aims to develop a safe, wearable clothing system that combines visibility-enhancing and emergency–accident-responding functions for two-wheeled vehicle (TWV) users'…

Abstract

Purpose

This study aims to develop a safe, wearable clothing system that combines visibility-enhancing and emergency–accident-responding functions for two-wheeled vehicle (TWV) users' safety assistance.

Design/methodology/approach

First, the wearable system (WS) allowing users to control turn signals, brake lights and emergency flasher only with head movements was developed. Second, multiconnected systems were developed between WSs and a smartphone application (AS), providing accident occurrence recognition, driving photo capture–storage and emergency notification functions. Third, usability testing in each function was performed to assess the operability of the systems.

Findings

The intuitive interface, which uses head movement as gesture commands, was effectively operated for controlling turn signals, brake lights and emergency flasher when driving, despite differences in user physique and boarding structure among TWVs. In addition, using Bluetooth low energy and Wi-Fi protocols simultaneously can establish automatic accident recognition–notification and driving photo capture–storage–display functions by linking two WSs with one AS.

Research limitations/implications

This study presents a case using relatively accessible technologies within the fashion industry to improve users' safety and provide fundamental data for convergence education for smart fashion products, highlighting the significance of this study in this convergence era.

Originality/value

The WSs and the AS of a TWV user visually evoke the attention of other drivers and pedestrians, reducing the risk of accidents; social contribution regarding public safety will be possible by allowing the system to autonomously inform emergencies and receive emergency medical treatment quickly when the accident occurred.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 26 March 2024

Achuthy Kottangal and Deepika Purohit

This study aims to analyze how conventional Bedouin weaving techniques have changed through the history of Israel, offering knowledge on the craft’s cultural relevance and…

Abstract

Purpose

This study aims to analyze how conventional Bedouin weaving techniques have changed through the history of Israel, offering knowledge on the craft’s cultural relevance and historical development among the Bedouin people and how their weaving and embroidery differ based on the three main geographic characteristics. It tries to comprehend the causes of the transition from organic to synthetic materials and the part played by the Lakiya Negev Bedouin Weaving women’s cooperative in maintaining this legacy.

Design/methodology/approach

The main goal of this study is to trace the emergence of Bedouin weaving traditions in the Negev Desert using a qualitative research methodology that combines historical analysis and ethnographic investigation. A thorough grasp of the subject’s significance is provided through the data gathering, which consists of interviews, archival research and field observations.

Findings

Through the years, Bedouin weaving techniques have significantly shifted away from using traditional organic materials in favor of synthetic replacements, according to the research. It emphasizes the crucial part played by the Lakiya Negev Bedouin Weaving women’s organization in safeguarding this traditional legacy and giving Bedouin women access to economic prospects.

Research limitations/implications

The limitation of the study includes its emphasis on the Negev region and the Israeli Bedouin community, which may not accurately reflect all Bedouin weaving techniques. Greater regional settings may be explored in future studies.

Practical implications

The investigation emphasizes the value of investing in initiatives for cultural preservation and the empowerment of underprivileged groups through economic possibilities.

Social implications

By preserving ancient weaving techniques, this research enables Bedouin women in the Negev Desert to maintain their cultural identity and socioeconomic well-being.

Originality/value

By emphasizing the socio-cultural dimensions and the organization’s role in preserving traditional craftsmanship in a changing socio-economic environment, this research presents a unique investigation of the evolution of Bedouin weaving techniques in Israel.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 25 April 2024

Linda Brennan, David Micallef, Eva L. Jenkins, Lukas Parker and Natalia Alessi

This study aims to explore the use of a double diamond design method to engage the industry in a sector-wide response to the issues of food waste as constructed by consumers. This…

Abstract

Purpose

This study aims to explore the use of a double diamond design method to engage the industry in a sector-wide response to the issues of food waste as constructed by consumers. This particular design method is achieved by an exploration of a collective intelligence-participatory design (CIPD) project to engage industry participants in understanding and responding to consumers’ perceptions of the role of packaging in reducing food waste.

Design/methodology/approach

Using the UK Design Council’s double diamond design method as a guiding conceptual principle, the project recruited industry participants from medium to large food businesses across various food categories. Two scoping workshops with industry were held prior to the initiation of a 12-stage project (n = 57), and then two industry workshops were held (n = 4 and 14). Eighty participants completed an online qualitative survey, and 23 industry participants took part in a Think Tank Sprint Series. The Think Tanks used participatory design approaches to understand barriers and opportunities for change within food industry sub-sectors and test the feasibility and acceptability of package designs to reduce consumer waste.

Findings

For CIPD to work for complex problems involving industry, it is vital that stakeholders across macro- and micro-subsystems are involved and that adequate time is allowed to address that complexity. Using both the right tools for engagement and the involvement of the right mix of representatives across various sectors of industry is critical to reducing blame shift. The process of divergence and convergence allowed clear insight into the long-term multi-pronged approach needed for the complex problem.

Originality/value

Participatory design has been useful within various behaviour change settings. This paper has demonstrated the application of the double diamond model in a social marketing setting, adding value to an industry-wide project that included government, peak bodies, manufacturing and production and retailers.

Details

Journal of Social Marketing, vol. 14 no. 2
Type: Research Article
ISSN: 2042-6763

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

51

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 June 2022

Niromi Seram and Githmi Deshani Samarasekara

The person who works in an office starts his or her day with a choice of attire. The way they look in the office depends on the decisions they make on their clothes. This study…

Abstract

Purpose

The person who works in an office starts his or her day with a choice of attire. The way they look in the office depends on the decisions they make on their clothes. This study aims to identify the challenges faced by employees in the management positions in the Sri Lankan apparel industry who regularly come into contact with customers when they have to decide upon the most appropriate work attire for the position they are occupying in their organization.

Design/methodology/approach

Collection of data was primarily achieved through a well-structured questionnaire containing a mixture of open- and closed-ended questions. Targeted employees were managers, designers and merchandisers belonging to Generation Y whose total number was sufficient to obtain 50 feedbacks. Six more interviews were conducted with the intention of finding out more about this matter.

Findings

The majority of employees in the management positions in the Sri Lankan apparel industry who have regular contact with customers prefer to dress in “smart casual attire”, which means semi-formal clothes. Lack of availability of certain varieties of business attire in Sri Lanka proved to be a major challenge for some employees. Overpriced clothing, less comfortable clothing and lack of the right fabrics and designs were also challenges. These findings highlight the importance of manufacturing a wider variety of business attire using moderately priced but comfortable fabrics to make affordable and good quality products. There is a need to have a persuasive merchandising method to achieve good sales and provide a pleasant shopping experience to the customers.

Originality/value

Sri Lankan workwear retailers as well as apparel designers can benefit from the findings of this research as there is no evidence of any other studies on this subject. Therefore, this will help them to fill the market gap for business attire by addressing these challenges.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 April 2024

Yuhong Li, Hang Gao and Xiaokun Yu

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database…

Abstract

Purpose

This study aims to increase the novelty of clothing design and fabric texture. The element library that can be used for design is systematically summarized. The element database can also be continuously filled according to the existing logic to realize the diversity of design. Improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. And verify the feasibility of the simulation software to assist pleated clothing design.

Design/methodology/approach

Firstly, according to the logical framework of origami theory, different innovative designs and combined designs are made for the basic units of hyperbolic paraboloid, and the element library that can be used for design is systematically summarized. This database can also be continuously filled according to the existing logic to realize the diversity of design. Secondly, it summarizes three methods of pleated element filling clothing – uniform filling method, the irregular filling method and geometric addition method – that improve the theory of fashion design, expand the designer's design ideas and improve design efficiency. Clear design steps and logic can help students and machines learn the design process and promote the development of intelligent design. Finally, the virtual software is used to simulate the effect of pleated clothing, and the three-dimensional simulation software 3dclo is used to make an empirical study on the application of hyperbolic paraboloid origami in clothing pleated design to verify the feasibility of the simulation software to assist pleated clothing design.

Findings

The theoretical results of hyperbolic paraboloid origami are collected and arranged to establish the element library of hyperbolic paraboloid origami. The results expand the designer's design ideas and auxiliary design technology and improve the design efficiency using a sample of hyperbolic paraboloid fabric to verify its practicability and three-dimensional clothing simulation software for exploring the design. The design rules of hyperbolic paraboloid clothing and the realization method of fabric are summarized, including the expansion and combing of elements, the application of size and shape and the method of combination.

Research limitations/implications

Owing to the hyperbolic paraboloid origami’s length shrinkage, the loose computation of clothing requires targeted computation. This paper solely applies a paper model for estimating the shrinkage, and then we tend to subsequently explore the way to precisely compute the porosity, to determine the existing differences in the two-dimensional shrinkage of hyperbolic paraboloid creases of varying materials and to know if the clothing after large-scale production is capable of reaching the anticipated value.

Practical implications

The exploration of this experiment brings a new 3D experiment process to the design process.

Social implications

This experiment brings new possibilities for the development of virtual fitting and virtual display in the industry.

Originality/value

This study combines hyperbolic paraboloid origami and clothing and combs and expands the unit with logical thinking to expand the designer's design ideas.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 18