Search results

1 – 10 of over 4000
Article
Publication date: 29 June 2018

Jiajia Peng, Gaoming Jiang, Honglian Cong, Xuan Luo and Yan Zhao

The whole garment technology offers a solution for the production efficiency by directly knitting a seamless tubular garment. Due to its complexity, high requirements and few…

Abstract

Purpose

The whole garment technology offers a solution for the production efficiency by directly knitting a seamless tubular garment. Due to its complexity, high requirements and few references, the technology has not been widely applied in mass production. Therefore, the purpose of this paper is to show garment technology’s detailed design method, the technique calculation process and its merits compared than common technology.

Design/methodology/approach

This paper first analyzes the knitting principle of the four-bed computerized flat knitting machine from its configuration. After that, the design method is putted forward as well as the technique calculation process. To reveal the advantages of the whole garment technology, this paper builds a comprehensive evaluation system by comparing the knitting time, labor cost and the yarn consumption.

Findings

With the evaluation system, the whole garment technology is proved to be more productive, cost-saving and less materials-consuming. Moreover, this advantage stands more out when the machine gage is higher.

Research limitations/implications

Due to limited research time and references, this paper only presents the whole garment technology for knitting common and traditional styles. More complicated and fashioned garments can be studied in the future research.

Practical implications

The design method and technology presented in this paper can be used as a reference for both the designers in the manufacture industry and the scholars for academic research works.

Originality/value

This paper has presented the whole garment technology and a specific method for technique calculation with consideration of garment structures. It also builds a evaluation system to show the advantages in terms of knitting efficiency, labor cost and yarn consumption.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 November 2021

Biqin Zhan, Xian Huang, Chenyuan Cai and Honglian Cong

Fully formed knitting technology is a cutting-edge technology in the design and production of knitted apparel. Using this technology and its supporting design system, a new…

Abstract

Purpose

Fully formed knitting technology is a cutting-edge technology in the design and production of knitted apparel. Using this technology and its supporting design system, a new development mode of fully formed knitted apparel with double-layer structure and fake two-piece knitwear is proposed.

Design/methodology/approach

Based on the upper body structure feature points of human body characteristics and single-layer knitted garment prototype, a double-layer structure knitted garment pattern was established by pattern expansion method. The model was introduced into SDS-APPEX3 design system for process design, including three aspects consists: the inner vest, the outer blouse and double-layer joint part, analysis of the process and forming principle. Weaving on four-needle bed computerized flat knitting machine of MACH-2XS, through the setting of the machine parameters. Finally, a full-shaped fake two-piece knitted blouse was formed.

Findings

On the basis of single-layer knitted garment pattern, a double-layer garment pattern is constructed, and the design and weaving are completed on the four-needle bed computerized knitting machine of MACH-2XS and its supporting SDS-APPEX3 design system through the fake two-piece double-layer garment style design. The double-layer joint model is an effective reference for the construction of this kind of fake two-piece fully formed knitted clothing.

Originality/value

In this paper, a design and knitting method of fully formed double-layer structure fake two-piece knitted garment is proposed. The integrated knitting of fully formed double-layer structure sweater is realized for the first time, which provides ideas for the development of fully formed double-layer structure knitted clothing style and enriches the fully formed clothing style.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 September 2023

Bilian Cheng, Gaoming Jiang, Junjie Zhao and Bingxian Li

The purpose of this paper is to conveniently and accurately design partial knitting knitted fabrics based on matrix transformation.

Abstract

Purpose

The purpose of this paper is to conveniently and accurately design partial knitting knitted fabrics based on matrix transformation.

Design/methodology/approach

Using mathematical modeling, the pattern diagram block matrix and process design matrix of partial knitting knitted fabrics are established, and the process knitting diagram with parameter information is generated. Based on the establishment of the mathematical model of the process knitting diagram, a loop deformation method based on three-dimensional (3D) coordinate point matrix transformation is proposed.

Findings

The matrix transformation method can provide a suitable deformed loop mode for partial knitting knitted fabrics and helps to generate a 3D modeling diagram conveniently.

Originality/value

This paper proposed a method of design and modeling of partial knitting knitted fabric based on matrix transformation. Taking the 3D modeling effect of conventional partial knitting as an example to test the modeling method, the results show that after matrix transformation, the loop model can realize the rapid transformation and calculation of the coordinates of the control point and generate a 3D modeling diagram.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 July 2020

Haisang Liu, Gaoming Jiang, Zhijia Dong, Fenglin Xia and Honglian Cong

The size prediction of garment is an important part in the process of the garment design and production, and it is also one of the most important features in warp-knitted

Abstract

Purpose

The size prediction of garment is an important part in the process of the garment design and production, and it is also one of the most important features in warp-knitted computer-aided design system. The purpose of this paper is to realize the auto-generation of the garment templates using JavaScript and WebGL technologies, based on the prediction of the size of warp-knitted seamless sportswear.

Design/methodology/approach

The warp-knitted jacquard technology is used to produce the warp-knitted seamless sportswear, which is divided into suits and tights. In order to achieve the purpose of this study, the dimensions of four kinds of jacquard patterns knitted under different knitting conditions are measured and the crosswise and longitudinal size shrinkage percentages are also calculated. Then, the relationship between the yarn count and the drawing density as well as the size shrinkage percentage is studied and a size prediction model for warp-knitted jacquard fabric is established. Next, according to the results of the size calculation, the point positions of the garment boundary in the mathematical coordinate system is determined. The color formula is built by the two-dimensional mathematical matrix. Finally, combined with the coordinate position and color information, the template can be drawn automatically.

Findings

Based on the size prediction model of warp-knitted garment, the template generation of warp-knitted full-form sportswear on WebGL-enabled web browser is realized, which is proven to be an effective computer-aided design method for warp-knitted garments.

Research limitations/implications

Because of limited researches, only two groups of yarns and four kinds of jacquard patterns were studied. A vaster database should be built and smooth curve, accurate coordinate needs to be optimized in the further research.

Practical implications

The size prediction model for warp-knitted jacquard garment and garment template auto-generation of warp-knitted computer-aided design system will simplify the fabric technical design process, shorten design time and improve the efficiency of new product development.

Social implications

The size prediction model for warp-knitted jacquard garment and garment template auto-generation of warp-knitted computer-aided design system will provide the industries a guidance for new sample development and it also can shorten the development time and lower cost.

Originality/value

This author analyzes the relationship between the size characteristics and knitting technology of warp-knitted jacquard patterns, proposes a model of size prediction and realizes the auto-drawing of the garment template in the warp-knitted CAD system, which provides a reference for the new product design and development of warp-knitted seamless sportswear.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 July 2020

Adriana Gorea, Fatma Baytar and Eulanda Sanders

The purpose of this research was to investigate the effect of knit fabric stitch patterns, as indicated by fabric thickness variations, on moisture responsiveness for different…

Abstract

Purpose

The purpose of this research was to investigate the effect of knit fabric stitch patterns, as indicated by fabric thickness variations, on moisture responsiveness for different seamless knitted wool-based fabrics.

Design/methodology/approach

Forty fabrics were created on a Santoni Top-2 circular knitting machine by using combinations of jersey, tuck and float stitches in combinations of wool/Nylon, wool, and spandex yarns. Physical properties of the knit fabrics as well as changes in fabric thickness during dry, wet, after 30 min air-drying and after 60 min air-drying conditions were compared. Repeated measures ANOVA tests and bivariate correlation analysis were conducted.

Findings

The results indicated that changes in moisture conditions had a significant effect on fabric thickness, and these changes differed by stitch pattern groups. Float patterns and tuck/rib patterns showed a continued relaxation of fabric thickness through all conditions, but tuck stitches and rib stitches showed a thickness recovery. Wool swatches, unlike the wool/Nylon swatches, increased their average thickness in after 60 min air-drying condition compared to 30 min air-drying condition.

Originality/value

This research documents the moisture responsive properties for wool based yarns, as emerging natural functional materials for seamless knitting industry, with applications in garments for activewear as well as healthcare.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 March 2017

Honglian Cong, Hui Lei, Yongchao Zhang, Aijun Zhang and Pibo Ma

The obtained simulation structures could reflect the appearances and the features of the fabrics. The purpose of this paper is to promote a lot for design and manufacturing of…

Abstract

Purpose

The obtained simulation structures could reflect the appearances and the features of the fabrics. The purpose of this paper is to promote a lot for design and manufacturing of weft-knitted lace fabrics (WKLF).

Design/methodology/approach

The advantages of WKLF compared with warp-knitted ones were displayed. The formation mechanism of the WKLF was analyzed with employing the mechanics principles. Spring-mass model was proposed in this paper to achieve the simulation of the fabrics. End mass points and intermediate mass points were involved in the model. The displacement of end mass points was considered the dominance and the foundation to settle the positions of all the mass points.

Findings

A novel jacquard lace style fabric with pattern-background effect knitted on circular knitting machine were put forward, which were different from the traditional lace fabrics manufactured on the warp knitting machines.

Originality/value

First, as the manufacturing equipment, circular knitting machine costs much less than warp knitting machine; second, the elastic performance along weft direction of WKLF is more excellent than that of warp-knitted ones. Third, the excellent extensibility gives nice comfort; furthermore, long floating threads do not exist on the WKLF surface, so that the snag will be avoided.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 November 2016

Aijun Zhang, Xinxin Li, Pibo Ma, Ying Xiong and Gaoming Jiang

Realistic geometric description is essential for simulating physical properties of warp-knitted velvet fabrics, which are widely used for home-textiles and garments. The purpose…

Abstract

Purpose

Realistic geometric description is essential for simulating physical properties of warp-knitted velvet fabrics, which are widely used for home-textiles and garments. The purpose of this paper is to provide an approach to the description of patterned piles and propose a customized simulation model to realize highly real-time simulation of warp-knitted velvet fabrics in three dimensions.

Design/methodology/approach

Based on knitting technology and structure features, a mathematical model to qualify forming possibility of piles is conducted by assessing underlaps of pattern bars and pile ground bars. When the pile areas and ground areas are classified, a three-dimensional (3D) space coordinate is built, of which the z-axis is divided into equal spaces to form certain multi-layer textured slices. Color and transparency of piles on each textured slice can be computed and generated by mapping to 3D geometrical grid layers with particular mapping relationship. Moreover, piles’ deflection and spatial collision are also taken into account to make sure high uniformity with real fabrics.

Findings

According to the models built, a simulator special for warp-knitted patterned velvet fabrics is programed via Visual C++ and the models are proven practical and easily implemented by comparing simulated effect of one sample with real fabric.

Research limitations/implications

Because of present limited research, 3D simulation of patterned velvet fabrics knitted on double-needle bar Raschel machine as well as 3D shadow effect will be studied in the further research.

Practical implications

The paper includes implications for designing patterned velvet products and shows convenience to instantly see finished effect without sampling on machine.

Originality/value

This paper fulfills a featured simulation method for warp-knitted patterned velvet fabrics in 3D dimensions for the first time.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 August 2015

Lanming Jin and Gaoming Jiang

Multilayer weft knitted fabrics possess many advantages, such as strongly stereoscopic patterns, soft handling and adjustable thickness of apparel and home textiles use. However…

Abstract

Purpose

Multilayer weft knitted fabrics possess many advantages, such as strongly stereoscopic patterns, soft handling and adjustable thickness of apparel and home textiles use. However, it is difficult to predict the final visual effects before the productive process because of the three-dimensional (3D) effect caused by the connecting yarn of the fabric. The purpose of this paper is to realize a realistic simulation of the fabric.

Design/methodology/approach

The authors applied to the curve and surface model to simulate the knitted fabric, instead of previous single loop model by NURBS. Macro simulation is more suitable for the fabric with the 3D effect because of the quick, real and convenient simulation. This research includes experiments on the structural parameters concerning the regular sag of multilayer weft knitted fabrics, and analysis of parameter data and the simulation process with the aim of realizing a computer simulation of the fabric, especially with a sense of reality. The Digital Elevation Model was also applied to build a simulated 3D model.

Findings

To obtain the values for the change rules, different samples were used and the outputs of the model were found to be close to the experimental results. The thickest and thinnest lengths and the changing curves between them were established. Patterned simple multilayer weft knitted fabric could be simulated through the results of the research. It is possible to simulate different real fabrics using their materials and expected effects. The authors are going to improve the model to simulate the complicate large-scale jacquard fabrics in further research.

Practical implications

The results will be useful for establishing a computer surface simulation system for stereo perception of fabrics.

Originality/value

The authors put forward the concept of surface warpage degree (R). It is an important factor affecting the fabric stereo feeling. The larger the value of R, the stronger the stereo sense of the fabric. It could be applied to most 3D fabric. A thickness difference testing method was proposed to characterize the stereo perception of fabrics. It is possible to simulate different real fabrics quickly without the model of the woven loop.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 March 2023

Elvira Sarybayeva, Meruert Kuramysova, Mirabzal Mukimov, Mukhamejan Shardarbek, Zhansaule Rakhmanova, Kamshat Makhanbetaliyeva, Farkhad Tashmukhamedov, Indira Jurinskaya and Marzhan Kalmakhanova

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical…

Abstract

Purpose

This study aims to investigate the effects of the number of miss stitches and tuck stitches in the knit structure on the technological parameters and physical and mechanical properties of knitted fabrics.

Design/methodology/approach

The number of miss stitches and tuck stitches was increased from 3.6% to 8.3%, and the influence of this increase on knitwear properties was analyzed.

Findings

It was found that an increase from 3.6% to 8.3% leads to a decrease in the stretchability of knitwear in width from 330% to 290% and in length from 112% to 95%. With an increase from 5% to 6.3%, the surface density of knitwear decreases by 11.6 g. And with an increase from 6.3% to 8.3%, the surface density of knitwear decreases by 11.8 g. It was also found that the presence of miss stitches and tuck stitches in the knit structure reduces the material consumption, and the presence of miss stitches increases the shape stability of the knitted fabric.

Originality/value

It was concluded that the number of miss stitches and tuck stitches has the strongest influence on surface density, followed by volume density.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 4000