Search results

1 – 10 of 217
Article
Publication date: 8 May 2024

Mengyao Fan, Xiaojing Ma, Lin Li, Xinpeng Xiao and Can Cheng

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle…

Abstract

Purpose

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle hydrodynamics (SPH) method. The purpose of this paper is to present the mechanism of the water treatment problem of the falling film evaporation for the high salinity mine water in Xinjiang region of China.

Design/methodology/approach

To effectively characterize the phase transition problem, the particle splitting and merging techniques are introduced. And the particle absorbing layer is proposed to improve the nonphysical aggregation phenomenon caused by the continuous splitting of gas phase particles. The multiresolution model and the artificial viscosity are adopted.

Findings

The SPH model is validated qualitatively with experiment results and then applied to the evaporation of the droplet impact on the liquid film. It is shown that the larger single droplet initial velocity and the smaller single droplet initial temperature difference between the droplet and liquid film improve the liquid film evaporation. The heat transfer effect of a single droplet is preferable to that of multiple droplets.

Originality/value

A multiphase SPH model for evaporation after the droplet impact on the liquid film is developed and validated. The effects of different factors on liquid film evaporation, including single droplet initial velocity, single droplet initial temperature and multiple droplets are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2023

Ana Aline Mendes Paim, Morgana Carneiro de Andrade and Fernanda Steffens

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal…

Abstract

Purpose

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal protection in pandemic situations.

Design/methodology/approach

A systematic review and systemic analysis of the literature on the subject were performed using the process knowledge development – constructivist (ProKnow-C) methodology.

Findings

A bibliographic portfolio with 16 relevant studies was obtained. This portfolio represents the main focus of this research field, including the main filtration mechanisms, ways of disinfecting N95 respirators and proposed methods to evaluate the filtration efficiency of different materials with potential for mask development.

Originality/value

To the best of the authors’ knowledge, this is the first time the ProKnow-C methodology was used in the textile field. Thus, future studies can benefit from using the Proknow-C for selecting and analyzing relevant textile studies following a systematic approach.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 December 2022

Zhenmin Yuan, Yuan Chang, Yunfeng Chen, Yaowu Wang, Wei Huang and Chen Chen

Precast wall lifting during prefabricated building construction faces multiple non-lean problems, such as inaccurate lifting-time estimation, unreasonable resource allocation and…

Abstract

Purpose

Precast wall lifting during prefabricated building construction faces multiple non-lean problems, such as inaccurate lifting-time estimation, unreasonable resource allocation and improper process design. This study aims to identify the pathways for improving lifting performance to advance lean construction of prefabricated buildings.

Design/methodology/approach

This study developed a methodological framework that integrates the discrete event simulation method, the elimination, combination, rearrangement and simplification (ECRS) technique and intelligent optimization tool. Two schemes of precast wall lifting, namely, the enterprise's business as usual (BAU) and enterprise-leading (EL) schemes, were set to benchmark lifting performance. Furthermore, a best-practice (BP) scheme was modeled from the perspective of lifting activity ECRS and resource allocation for performance optimization.

Findings

A real project was selected to test the effect of the methodological framework. The results showed that compared with the EL scheme, the BP scheme reduced the total lifting time (TLT) by 6.3% and mitigated the TLT uncertainty (the gap between the maximum and minimum time values) by 20.6%. Under the BP scheme, increasing the resource inputs produces an insignificant effect in reducing TLT, i.e. increasing the number of component operators in the caulking subprocess from one to two only shortened the TLT by 3.6%, and no further time reduction was achieved as more component operators were added.

Originality/value

To solve non-lean problems associated with prefabricated building construction, this study provides a methodological framework that can separate a typical precast wall lifting process into fine-level activities. Besides, it also identifies the pathways (including the learning effect mitigation, labor and machinery resource adjustment and activities’ improvement) to reducing TLT and its uncertainty.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 May 2024

Dongfei Li, Hongtao Wang and Ning Dai

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the…

Abstract

Purpose

This paper aims to propose a method for automatic design of additive manufacturing (AM) flow channel paths driven by path length and pressure loss. The research focuses on the automatic design of channel paths, intending to achieve the shortest flow channel length or minimum pressure loss and improve the design efficiency of AM parts.

Design/methodology/approach

The initial layout of the flow channels is redesigned to consider the channels print supports. Boundary conditions and constraints are defined according to the redesigned channels layout, and the equation consisting of channel length and pressure loss is used as the objective function. Then the path planning simulation is performed based on particle swarm algorithm. The proposed method describes the path of flow channels using spline cures. The spline curve is controlled by particle (one particle represents a path), and the particle is randomly generated within the design space. After the path planning simulation is completed, the generated paths are used to create 3D parts.

Findings

Case study 1 demonstrates the automatic design of hydraulic spool valve. Compared to conventional spool valve, the pressure loss was reduced by 86% and the mass was reduced by 83%. The design results of case study 2 indicate that this approach is able to find the shortest channel path with lower computational cost.

Originality/value

The automatic design method of flow channel paths driven by path length and pressure loss presented in this paper provides a novel solution for the creation of AM flow components.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 May 2024

Xiao Yang and Xinbo Qian

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful…

Abstract

Purpose

Hydraulic slide valve failure often results from competing failure modes, termed competitive failure. To enhance prediction accuracy for hydraulic slide valve remaining useful life, the authors propose a method incorporating competitive failure and Monte Carlo simulation. This method allows for more accurate prediction of hydraulic slide valve remaining useful life.

Design/methodology/approach

In this paper, the competitive failure mode of the hydraulic slide valve is analyzed by studying the two failure modes of the hydraulic slide valve, and the prediction of the remaining useful life of the hydraulic slide valve is studied by using the sample set generated by Monte Carlo simulation and the competitive failure joint model.

Findings

The results show that the proposed prediction method based on competitive failure and Monte Carlo simulation is more accurate than the traditional Bayesian joint model prediction method when dealing with the failure mode competition phenomenon of hydraulic slide valve.

Originality/value

In this paper, the remaining useful life prediction of hydraulic slide valve with competitive failure characteristics is studied, which provides a new idea for the remaining useful life prediction method.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0361/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 October 2023

Zijing Ye, Huan Li and Wenhong Wei

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such…

Abstract

Purpose

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.

Design/methodology/approach

Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.

Findings

Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.

Originality/value

Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 January 2024

Wenhao Zhou, Hailin Li, Hufeng Li, Liping Zhang and Weibin Lin

Given the regional heterogeneity of economic development, electricity consumption in various regions exhibits a discrepant growth pattern. The purpose of this study is to…

Abstract

Purpose

Given the regional heterogeneity of economic development, electricity consumption in various regions exhibits a discrepant growth pattern. The purpose of this study is to construct a grey system forecasting model with intelligent parameters for predicting provincial electricity consumption in China.

Design/methodology/approach

First, parameter optimization and structural expansion are simultaneously integrated into a unified grey system prediction framework, enhancing its adaptive capabilities. Second, by setting the minimum simulation percentage error as the optimization goal, the authors apply the particle swarm optimization (PSO) algorithm to search for the optimal grey generation order and background value coefficient. Third, to assess the performance across diverse power consumption systems, the authors use two electricity consumption cases and select eight other benchmark models to analyze the simulation and prediction errors. Further, the authors conduct simulations and trend predictions using data from all 31 provinces in China, analyzing and predicting the development trends in electricity consumption for each province from 2021 to 2026.

Findings

The study identifies significant heterogeneity in the development trends of electricity consumption systems among diverse provinces in China. The grey prediction model, optimized with multiple intelligent parameters, demonstrates superior adaptability and dynamic adjustment capabilities compared to traditional fixed-parameter models. Outperforming benchmark models across various evaluation indicators such as root mean square error (RMSE), average percentage error and Theil’s index, the new model establishes its robustness in predicting electricity system behavior.

Originality/value

Acknowledging the limitations of traditional grey prediction models in capturing diverse growth patterns under fixed-generation orders, single structures and unadjustable background values, this study proposes a fractional grey intelligent prediction model with multiple parameter optimization. By incorporating multiple parameter optimizations and structure expansion, it substantiates the model’s superiority in forecasting provincial electricity consumption.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 March 2024

Hendrik Hensel and Markus Clemens

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air…

Abstract

Purpose

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air. However, under high voltage direct current conditions, charge accumulation and electric field stress may occur, which may lead to partial discharge or system failure. Therefore, numerical simulations are used to design the system and determine the electric field and charge distribution. Although the gas conduction shows a more complex current–voltage characteristic compared to solid insulation, the electric conductivity of the SF6 gas is set as constant in most works. The purpose of this study is to investigate different approaches to address the conduction in the gas properly for numerical simulations.

Design/methodology/approach

In this work, two approaches are investigated to address the conduction in the insulating gas and are compared to each other. One method is an ion-drift-diffusion model, where the conduction in the gas is described by the ion motion in the SF6 gas. However, this method is computationally expensive. Alternatively, a less complex approach is an electro-thermal model with the application of an electric conductivity model for the SF6 gas. Measurements show that the electric conductivity in the SF6 gas has a nonlinear dependency on temperature, electric field and gas pressure. From these measurements, an electric conductivity model was developed. Both methods are compared by simulation results, where different parameters and conditions are considered, to investigate the potential of the electric conductivity model as a computationally less expensive alternative.

Findings

The simulation results of both simulation approaches show similar results, proving the electric conductivity for the SF6 gas as a valid alternative. Using the electro-thermal model approach with the application of the electric conductivity model enables a solution time up to six times faster compared to the ion-drift-diffusion model. The application of the model allows to examine the influence of different parameters such as temperature and gas pressure on the electric field distribution in the GIL, whereas the ion-drift-diffusion model enables to investigate the distribution of homo- and heteropolar charges in the insulation gas.

Originality/value

This work presents numerical simulation models for high voltage direct current GIL, where the conduction in the SF6 gas is described more precisely compared to a definition of a constant electric conductivity value for the insulation gas. The electric conductivity model for the SF6 gas allows for consideration of the current–voltage characteristics of the gas, is computationally less expensive compared to an ion-drift diffusion model and needs considerably less solution time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2024

Yanwei Dai, Libo Zhao, Fei Qin and Si Chen

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Abstract

Purpose

This study aims to characterize the mechanical properties of sintered nano-silver under various sintering processes by nano-indentation tests.

Design/methodology/approach

Through microstructure observations and characterization, the influences of sintering process on the microstructure evolutions of sintered nano-silver were presented. And, the indentation load, indentation displacement curves of sintered silver under various sintering processes were measured by using nano-indentation test. Based on the nano-indentation test, a reverse analysis of the finite element calculation was used to determine the yielding stress and hardening exponent.

Findings

The porosity decreases with the increase of the sintering temperature, while the average particle size of sintered nano-silver increases with the increase of sintering temperature and sintering time. In addition, the porosity reduced from 34.88%, 30.52%, to 25.04% if the ramp rate was decreased from 25°C/min, 15°C/min, to 5°C/min, respectively. The particle size appears more frequently within 1 µm and 2 µm under the lower ramp rate. With reverse analysis, the strain hardening exponent gradually heightened with the increase of temperature, while the yielding stress value decreased significantly with the increase of temperature. When the sintering time increased, the strain hardening exponent increased slightly.

Practical implications

The mechanical properties of sintered nano-silver under different sintering processes are clearly understood.

Originality/value

This paper could provide a novel perspective on understanding the sintering process effects on the mechanical properties of sintered nano-silver.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 May 2024

Santosh Kumar Sahu, P.S. Rama Sreekanth, Y.P. Deepthi, Quanjin Ma and Tunji John Erinle

This study aims to investigate the mechanical properties of sustainable recycled polypropylene (rPP) composite materials integrated with spherical silicon carbide (SiC) particles.

Abstract

Purpose

This study aims to investigate the mechanical properties of sustainable recycled polypropylene (rPP) composite materials integrated with spherical silicon carbide (SiC) particles.

Design/methodology/approach

A representative volume element (RVE) analysis is employed to predict the Young’s modulus of rPP filled with spherical-shaped SiC at varying volume percentages (i.e. 10, 20 and 30%).

Findings

The investigation reveals that the highest values of Young’s modulus, tensile strength, flexural strength and mode 1 frequency are observed for the 30% rPP/SiC samples, exhibiting increases of 115, 116, 62 and 15%, respectively, compared to pure rPP. Fractography analysis confirms the ductile nature of pure rPP and the brittle behavior of the 30% rPP/SiC composite. Moreover, the RVE method predicts Young’s modulus more accurate than micromechanical models, aligning closely with experimental results. Additionally, results from ANSYS simulation tests show tensile strength, flexural strength and frequency within a 10% error range when compared to experimental data.

Originality/value

This study contributes to the field by demonstrating the mechanical enhancements achievable through the incorporation of sustainable materials like rPP/SiC, thereby promoting environmentally friendly engineering solutions.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 217