Search results

1 – 10 of 86
Article
Publication date: 6 June 2023

Khair Ul Faisal Wani and Nallasivam K.

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Abstract

Purpose

The purpose of this study is to numerically model the rigid pavement resting on two-parameter soil and to examine its modal parameters.

Design/methodology/approach

This study is carried out using a one-dimensional beam element with three rotational and three translational degrees of freedom based on the finite element method. MATLAB programming is used to perform the free vibration analysis of the rigid pavement.

Findings

Cyclic frequency and their corresponding mode shapes were determined. It has been investigated how cyclic frequency changes as a result of variations in the thickness, span length of pavement, shear modulus, modulus of subgrade, different boundary conditions and element discretization. Thickness of the pavement and span length has greater effect on the cyclic frequency. Maximum increase of 29.7% is found on increasing the thickness, whereas the cyclic frequency decreases by 63.49% on increasing span length of pavement.

Research limitations/implications

The pavement's free vibration is the sole subject of the current investigation. This study limits for the preliminary design phase of rigid pavements, where a complete three-dimensional finite element analysis is unnecessary. The current approach can be extended to future research using a different method, such as finite element grilling technique, mesh-free technique on reinforced concrete pavements or jointed concrete pavements.

Originality/value

The finite element approach adopted in this paper involves six degrees of freedom for each node. Furthermore, to the best of the authors’ knowledge, no prior study has done seven separate parametric investigations on the modal analysis of rigid pavement resting on two-parameter soil.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 August 2021

Bin Zheng, Yi Cai and Kelun Tang

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the…

Abstract

Purpose

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine.

Design/methodology/approach

The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization.

Findings

After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased.

Originality/value

This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

40

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 April 2024

Guanglu Yang, Si Chen, Jianwei Qiao, Yubao Liu, Fuwen Tian and Cunxiang Yang

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet…

Abstract

Purpose

The purpose of this paper is to present the influence of inter-turn short circuit faults (ITSF) on electromagnetic vibration in high-voltage line-starting permanent magnet synchronous motor (HVLSPMSMS).

Design/methodology/approach

In this paper, the ampere–conductor wave model of HVLSPMSM after ITSF is established. Second, a mathematical model of the magnetic field after ITSF is established, and the influence law of the ITSF on the air-gap magnetic field is analyzed. Further, the mathematical expression of the electromagnetic force density is established based on the Maxwell tensor method. The impact of HVLSPMSM torque ripple frequency, radial electromagnetic force spatial–temporal distribution and rotor unbalanced magnetic tension force by ITSF is revealed. Finally, the electromagnetic–mechanical coupling model of HVLSPMSM is established, and the vibration spectra of the motor with different degrees of ITSF are solved by numerical calculation.

Findings

In this study, it is found that the 2np order flux density harmonics and (2 N + 1) p order electromagnetic forces are not generated when ITSF occurs in HVLSPMSM.

Originality/value

By analyzing the multi-harmonics of HVLSPMSM after ITSF, this paper provides a reliable method for troubleshooting from the perspective of vibration and torque fluctuation and rotor unbalanced electromagnetic force.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 September 2023

Xiao-Yu Xu, Syed Muhammad Usman Tayyab, Qingdan Jia and Albert H. Huang

Video game streaming (VGS) is emerging as an extremely popular, highly interactive, inordinately subscribed and very dynamic form of digital media. Incorporated environmental…

Abstract

Purpose

Video game streaming (VGS) is emerging as an extremely popular, highly interactive, inordinately subscribed and very dynamic form of digital media. Incorporated environmental elements, gratifications and user pre-existing attitudes in VGS, this paper presents the development of an extended model of uses and gratification theory (EUGT) for predicting users' behavior in novel technological context.

Design/methodology/approach

The proposed model was empirically tested in VGS context due to its popularity, interactivity and relevance. Data collected from 308 VGS users and structural equation modeling (SEM) was employed to assess the hypotheses. Multi-model comparison technique was used to assess the explanatory power of EUGT.

Findings

The findings confirmed three significant types elements in determining VGS viewers' engagement, including gratifications (e.g. involvement), environmental cues (e.g. medium appeal) and user predispositions (e.g. pre-existing attitudes). The results revealed that emerging technologies provide potential opportunities for new motives and gratifications, and highlighted the significant of pre-existing attitudes as a mediator in the gratification-uses link.

Originality/value

This study is one of its kind in tackling the criticism on UGT of considering media users too rational or active. The study achieved this objective by considering environmental impacts on user behavior which is largely ignored in recent UGT studies. Also, by incorporating users pre-existing attitudes into UGT framework, this study conceptualized and empirically verified the higher explanatory power of EUGT through a novel multi-modal approach in VGS. Compared to other rival models, EUGS provides a more robust explanation of users' behavior. The findings contribute to the literature of UGT, VGS and users' engagement.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 13 December 2022

Oindrila Dey and Debalina Chakravarty

Electric street car (ESC) is a globally popular clean and safe electric transport system for urban agglomeration. India envisions achieving “all-electric transport” by 2030, yet…

Abstract

Purpose

Electric street car (ESC) is a globally popular clean and safe electric transport system for urban agglomeration. India envisions achieving “all-electric transport” by 2030, yet ESC as a modal transport alternative is not distinct in the policy discussion. The emerging market for electric transportation in urban spaces requires a detailed demand study at the service user level to remove behavioural barriers and design integrated energy planning in developing economies. This paper explores the probabilistic uptake intentions of the daily public transport commuters for ESCs over e-buses from the only Indian city with operational ESCs, Kolkata.

Design/methodology/approach

Using a random utility model on primary survey data from daily commuters, the authors identify demographic, psychometric and socio-economic factors influencing probabilistic uptake of ESC over e-buses.

Findings

It estimates that 38% of the commuters demand ESC over e-buses, given the alternatives' comparative details. Factors like frequent availability and technological upgradation would increase the uptake of ESCs.

Social implications

The study highlights that even though there are infrastructural challenges in the implementation of ESC, so does any other electric transport system; it is worth considering as a decarbonising transport alternative, given the high up-take intension of the users.

Originality/value

This is the first attempt to study the demand for ESC in developing economies, identifying the factors which may be considered in the sustainable urban transportation policy perspective.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Open Access
Article
Publication date: 18 April 2024

Yaxing Ren, Ren Li, Xiaoying Ru and Youquan Niu

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller…

Abstract

Purpose

This paper aims to design an active shock absorber scheme for use in conjunction with a passive shock absorber to suppress the horizontal vibration of elevator cars in a smaller range and shorter time. The developed active shock absorber will also improve the safety and comfort of passengers driving in ultra-high-speed elevators.

Design/methodology/approach

A six-degree of freedom dynamic model is established according to the position and condition of the car. Then the active shock absorber and disturbance compensation-based adaptive control scheme are designed and simulated in MATLAB/Simulink. The results are analysed and compared with the traditional shock absorber.

Findings

The results show that, compared with traditional spring-based passive damping systems, the designed active shock absorber can reduce vibration displacement by 60%, peak acceleration by 50% and oscillation time by 2/3 and is more robust to different spring stiffness, damping coefficient and load.

Originality/value

The developed active shock absorber and its control algorithm can significantly reduce vibration amplitude and converged time. It can also adjust the damping strength according to the actual load of the elevator car, which is more suitable for high-speed elevators.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 28 April 2023

Mohamed Beneldjouzi, Mohamed Hadid and Nasser Laouami

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI…

Abstract

Purpose

Several studies were made on paired site and soil–structure interaction (SSI) effects, but most of them were site specific. This paper aims to investigate the impact of SSI effects in conjunction with local soil condition effects on the seismic response of typical multistory low- to mid-rise–reinforced concrete (RC) buildings resting on Algerian regulatory design sites through a global explicit transfer function (TF).

Design/methodology/approach

A preliminary quantification of SSI effects associated with site effects is carried out through a frequency-domain solution based on the concept of rock-to-soil surface displacement TF performed for each design site category. It results from the combination of the TFs of structure, foundation and soil and reflects how seismic waves are amplified due to changes in the geological contrast between the rock and overlying soil deposits. As well, response modification factors, denoting displacement ratios of the building responses within the flexible and site-structure conditions with respect to the fixed-base one, are carried out.

Findings

In the context of Algerian seismic regulation, the study provides a clear vision of how and when site or SSI effects are expected to be influential, as opposed to the fixed-base hypothesis still retained by the current regulation. This helps engineers to be aware of the extent of the expected seismic damage.

Research limitations/implications

The research applies to low- to mid-rise RC buildings within the Algerian seismic regulation, but it may also be expanded to other examples that fall under other seismic regulations.

Practical implications

The response modification ratio is a quantitative approach to assessing response fluctuations. It draws attention to how the roof level drift varies depending on the condition. These results can be used as numerical parameters in structural seismic design when the structure is comparable because they provide useful information about how the two phenomena interact with the structure.

Originality/value

The study goes beyond particular situations dealing with site specific and offers effective indicators and quantitative evaluation of combined site and SSI effects according to the current national seismic provisions, where no indication about site or SSI effects exists.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 October 2023

Mallikarjun S. Bhandiwad, B.M. Dodamani and Deepak M.D.

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or…

Abstract

Purpose

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation.

Design/methodology/approach

The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008).

Findings

The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency.

Research limitations/implications

The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank.

Originality/value

The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 29 January 2024

Miaoxian Guo, Shouheng Wei, Chentong Han, Wanliang Xia, Chao Luo and Zhijian Lin

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical…

Abstract

Purpose

Surface roughness has a serious impact on the fatigue strength, wear resistance and life of mechanical products. Realizing the evolution of surface quality through theoretical modeling takes a lot of effort. To predict the surface roughness of milling processing, this paper aims to construct a neural network based on deep learning and data augmentation.

Design/methodology/approach

This study proposes a method consisting of three steps. Firstly, the machine tool multisource data acquisition platform is established, which combines sensor monitoring with machine tool communication to collect processing signals. Secondly, the feature parameters are extracted to reduce the interference and improve the model generalization ability. Thirdly, for different expectations, the parameters of the deep belief network (DBN) model are optimized by the tent-SSA algorithm to achieve more accurate roughness classification and regression prediction.

Findings

The adaptive synthetic sampling (ADASYN) algorithm can improve the classification prediction accuracy of DBN from 80.67% to 94.23%. After the DBN parameters were optimized by Tent-SSA, the roughness prediction accuracy was significantly improved. For the classification model, the prediction accuracy is improved by 5.77% based on ADASYN optimization. For regression models, different objective functions can be set according to production requirements, such as root-mean-square error (RMSE) or MaxAE, and the error is reduced by more than 40% compared to the original model.

Originality/value

A roughness prediction model based on multiple monitoring signals is proposed, which reduces the dependence on the acquisition of environmental variables and enhances the model's applicability. Furthermore, with the ADASYN algorithm, the Tent-SSA intelligent optimization algorithm is introduced to optimize the hyperparameters of the DBN model and improve the optimization performance.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 86