Search results

1 – 6 of 6
Article
Publication date: 20 December 2023

Indira Damarla, Venmathi M., Krishnakumar V. and Anbarasan P.

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of…

Abstract

Purpose

In this paper, a new front end converter (FEC) topology has been proposed for the switched reluctance (SR) motor drive. This study aims to present the performance analysis of FEC-based SR motor drive using various types of control schemes like conventional proportional integral (PI) controller, fuzzy logic controller (FLC) and fuzzy-tuned proportional integral controller (Fuzzy-PI).

Design/methodology/approach

The proposed FEC-based SR motor drive with various control strategies is derived for the torque ripple minimization and speed control.

Findings

The steady state and the dynamic response of the FEC-based SR motor drive are analyzed using three different controllers under change in speed and loading conditions. The Fuzzy-PI-based control scheme improves the dynamic response of the system when compared with the FLC and the conventional PI controller.

Originality/value

The hardware prototype has been implemented for the FEC-based SR motor drive by using the Xilinx SPARTAN 6 FPGA processor. The experimental verification has been conducted and the results have been measured under steady state and dynamic conditions.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 May 2024

P. Santhuja and V. Anbarasu

An efficient e-waste management system is developed, aided by deep learning techniques. Here, a smart bin system using Internet of things (IoT) sensors is generated. The sensors…

Abstract

Purpose

An efficient e-waste management system is developed, aided by deep learning techniques. Here, a smart bin system using Internet of things (IoT) sensors is generated. The sensors detect the level of waste in the dustbin. The data collected by the IoT sensor is stored in the blockchain. Here, an adaptive deep Markov random field (ADMRF) method is implemented to determine the weight of the wastes. The performance of the ADMRF is boosted by optimizing its parameters with the help of the improved corona virus herd immunity optimization algorithm (ICVHIOA). Here, the main objective of the developed ADMRF-based waste weight prediction is to minimize the root mean square error (RMSE) and mean absolute error (MAE) rate at the time of testing. If the weight of the bins is more than 80%, then an alert message will be sent to the waste collector directly. Optimal route selection is carried out using the developed ICVHIOA for efficient collection of wastes from the smart bin. Here, the main objectives of the optimal route selection are to reduce the distance and time to minimize the operational cost and the environmental impacts. The collected waste is then considered for recycling. The performance of the implemented IoT and blockchain-based smart dustbin is evaluated by comparing it with other existing smart dustbins for e-waste management.

Design/methodology/approach

The developed e-waste management system is used to collect the waste and to avoid certain diseases caused by the dumped waste. Disposal and recycling of the e-waste is necessary to decrease pollution and to manufacture new products from the waste.

Findings

The RMSE of the implemented framework was 33.65% better than convolutional neural network (CNN), 27.12% increased than recurrent neural network (RNN), 22.27% advanced than Resnet and 9.99% superior to long short-term memory (LSTM).

Originality/value

The proposed E-waste management system has given an enhanced performance rate in weight prediction and also in optimal route selection when compared with other conventional methods.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 June 2024

Junhui Zhang, Sai Zhang, Yuhua Yang and Wendong Zhang

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy…

Abstract

Purpose

Based on the micro-electro-mechanical system (MEMS) technology, acoustic emission sensors have gained popularity owing to their small size, consistency, affordability and easy integration. This study aims to provide direction for the advancement of MEMS acoustic emission sensors and predict their future potential for structural health detection of microprecision instruments.

Design/methodology/approach

This paper summarizes the recent research progress of three MEMS acoustic emission sensors, compares their individual strengths and weaknesses, analyzes their research focus and predicts their development trend in the future.

Findings

Piezoresistive, piezoelectric and capacitive MEMS acoustic emission sensors are the three main streams of MEMS acoustic emission sensors, which have their own advantages and disadvantages. The existing research has not been applied in practice, and MEMS acoustic emission sensor still needs further research in the aspects of wide frequency/high sensitivity, good robustness and integration with complementary metal oxide semiconductor. MEMS acoustic emission sensor has great development potential.

Originality/value

In this paper, the existing research achievements of MEMS acoustic emission sensors are described systematically, and the further development direction of MEMS acoustic emission sensors in the future research field is pointed out. It provides an important reference value for the actual weak acoustic emission signal detection in narrow structures.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 February 2024

Wenhai Tan, Yichen Zhang, Yuhao Song, Yanbo Ma, Chao Zhao and Youfeng Zhang

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion…

26

Abstract

Purpose

Aqueous zinc-ion battery has broad application prospects in smart grid energy storage, power tools and other fields. Co3O4 is one of the ideal cathode materials for water zinc-ion batteries due to their high theoretical capacity, simple synthesis, low cost and environmental friendliness. Many studies were concentrated on the synthesis, design and doping of cathodes, but the effect of process parameters on morphology and performance was rarely reported.

Design/methodology/approach

Herein, Co3O4 cathode material based on carbon cloth (Co3O4/CC) was prepared by different temperatures hydrothermal synthesis method. The temperatures of hydrothermal reaction are 100°C, 120°C, 130°C and 140°C, respectively. The influence of temperatures on the microstructures of the cathodes and electrochemical performance of zinc ion batteries were investigated by X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry curve, electrochemical charging and discharging behavior and electrochemical impedance spectroscopy test.

Findings

The results show that the Co3O4/CC material synthesized at 120°C has good performance. Co3O4/CC nanowire has a uniform distribution, regular surface and small size on carbon cloth. The zinc-ion battery has excellent rate performance and low reaction resistance. In the voltage range of 0.01–2.2 V, when the current density is 1 A/g, the specific capacity of the battery is 108.2 mAh/g for the first discharge and the specific capacity of the battery is 142.6 mAh/g after 60 charge and discharge cycles.

Originality/value

The study aims to investigate the effect of process parameters on the performance of zinc-ion batteries systematically and optimized applicable reaction temperature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 December 2023

Ahmed Farouk Kineber, Ayodeji Emmanuel Oke, Ali Hassan Ali, Oluwaseun Dosumu, Kayode Fakunle and Oludolapo Ibrahim Olanrewaju

This study aims to explore the critical application areas of radio frequency identification (RFID) technology for sustainable buildings.

Abstract

Purpose

This study aims to explore the critical application areas of radio frequency identification (RFID) technology for sustainable buildings.

Design/methodology/approach

The quantitative research approach was adopted through a structured questionnaire administered to relevant stakeholders of construction projects. The data collected were analysed with the exploratory factor analysis, relative importance index (RII) and fuzzy synthetic evaluation (FSE).

Findings

The study’s results have categorised the crucial areas of application where construction industry stakeholders should focus their attention. These areas are divided into four categories: management technologies, production technologies, sensing technologies and monitoring technologies. The findings from the FSE indicate that monitoring technologies represent the most significant category, whereas management technologies rank as the least significant. Moreover, the RII analysis highlights that tools management stands out as the most important application of RFID, while dispute resolution emerges as the least significant RFID application.

Practical implications

The study establishes the core areas of RFID application and their benefits to sustainable buildings. Consequently, it helps stakeholders (consultants, clients and contractors) to examine the RFID application areas and make informed decision on sustainable construction. Furthermore, it provides systematic proof that can aid the implementation of RFID in developing countries.

Originality/value

The study provides an insight into the possible application areas and benefits of RFID technology in the construction industry of developing countries. It also developed a conceptual frame for the critical application areas of RFID technology in the construction industry of developing countries.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Access

Year

Last 12 months (6)

Content type

Earlycite article (6)
1 – 6 of 6