Search results

1 – 10 of over 1000
Article
Publication date: 2 March 2023

Wentao Zhan, Minghui Jiang and Xueping Wang

Omnichannel sales have provided new impetus for the development of catering merchants. The authors thus focus on how catering merchants should manage capacities at the ordering…

Abstract

Purpose

Omnichannel sales have provided new impetus for the development of catering merchants. The authors thus focus on how catering merchants should manage capacities at the ordering, production and delivery stages to meet customers’ needs in different channels under third-party platform delivery and merchant self-delivery. This is of great significance for the development of the omnichannel catering industry.

Design/methodology/approach

This paper formulates the capacity decisions of omnichannel catering merchants under the third-party platform delivery and merchant self-delivery mode. The authors mainly use queuing theory to analyze the queuing behavior of online and offline customers, and the impact of waiting time on customer shopping behavior. In addition, the authors also characterize the merchant’s capacity by the rate in queuing model.

Findings

The authors find that capacities at ordering stage and food production stage are composed of base capacities and safety capacities, but the delivery capacities only have the latter. And in the self-delivery mode, merchants can develop higher safety capacities by charging delivery fees. The authors prove that regardless of the delivery mode, omnichannel sales can bring higher profits to merchants by integrating demand.

Originality/value

The authors focus on analyzing the capacity management of omnichannel catering merchants at the ordering, production and delivery stages. And the authors also add the delivery process into the omnichannel for analysis, so as to solve the problem of capacity decision-making under different delivery modes. The management of delivery capacity and its impact on other stages’ capacities are not covered in other literature studies, which is one of the main innovations of this paper.

Details

Kybernetes, vol. 53 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 19 April 2024

Bong-Gyu Jang and Hyeng Keun Koo

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components…

Abstract

We present an approach for pricing American put options with a regime-switching volatility. Our method reveals that the option price can be expressed as the sum of two components: the price of a European put option and the premium associated with the early exercise privilege. Our analysis demonstrates that, under these conditions, the perpetual put option consistently commands a higher price during periods of high volatility compared to those of low volatility. Moreover, we establish that the optimal exercise boundary is lower in high-volatility regimes than in low-volatility regimes. Additionally, we develop an analytical framework to describe American puts with an Erlang-distributed random-time horizon, which allows us to propose a numerical technique for approximating the value of American puts with finite expiry. We also show that a combined approach involving randomization and Richardson extrapolation can be a robust numerical algorithm for estimating American put prices with finite expiry.

Details

Journal of Derivatives and Quantitative Studies: 선물연구, vol. 32 no. 2
Type: Research Article
ISSN: 1229-988X

Keywords

Article
Publication date: 30 April 2024

Zheng Liu, Na Huang, Chunjia Han, Mu Yang, Yuanjun Zhao, Wenzhuo Sun, Varsha Arya, Brij B. Gupta and Lihua Shi

The aim of this study was to analyze the effects of carbon reduction efforts and preservation efforts on system benefits in the cold chain industry of fresh products.

Abstract

Purpose

The aim of this study was to analyze the effects of carbon reduction efforts and preservation efforts on system benefits in the cold chain industry of fresh products.

Design/methodology/approach

This study develops an optimal decision game model for the fresh products in the cold chain, incorporating the retailer's preservation effort and the supplier's carbon emission reduction effort. It quantifies the relationship between carbon emission reduction effort, preservation effort and system profit. The model considers parameters like carbon trading price, consumer low-carbon preference and consumer freshness preference, reflecting real-world conditions and market trends. Numerical simulations are conducted by varying these parameters to observe their impact on system profit.

Findings

Under the carbon cap-and-trade policy, the profit of the fresh cold chain system is higher than that of the fresh cold chain system without carbon constraints, and the profit of the supplier under decentralized decision-making is increased by nine times in the simulation results. The increase in carbon trading prices can effectively improve the freshness level of fresh products cold chain, carbon emission reduction level and system profit.

Originality/value

This study comprehensively considers the factors of freshness and carbon emission reduction, provides the optimal low-carbon production decision-making reference for the fresh food cold chain and promotes the sustainable development of the fresh food cold chain.

Details

British Food Journal, vol. 126 no. 6
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 28 November 2022

Elena Stefana, Paola Cocca, Federico Fantori, Filippo Marciano and Alessandro Marini

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

1678

Abstract

Purpose

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

Design/methodology/approach

The authors conducted a literature review about the studies focusing on approaches combining OEE with monetary units and/or resource issues. The authors developed an approach based on Overall Equipment Cost Loss (OECL), introducing a component for the production resource consumption of a machine. A real case study about a smart multicenter three-spindle machine is used to test the applicability of the approach.

Findings

The paper proposes Resource Overall Equipment Cost Loss (ROECL), i.e. a new KPI expressed in monetary units that represents the total cost of losses (including production resource ones) caused by inefficiencies and deviations of the machine or equipment from its optimal operating status occurring over a specific time period. ROECL enables to quantify the variation of the product cost occurring when a machine or equipment changes its health status and to determine the actual product cost for a given production order. In the analysed case study, the most critical production orders showed an actual production cost about 60% higher than the minimal cost possible under the most efficient operating conditions.

Originality/value

The proposed approach may support both production and cost accounting managers during the identification of areas requiring attention and representing opportunities for improvement in terms of availability, performance, quality, and resource losses.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 6 February 2024

Lin Xue and Feng Zhang

With the increasing number of Web services, correct and efficient classification of Web services is crucial to improve the efficiency of service discovery. However, existing Web…

Abstract

Purpose

With the increasing number of Web services, correct and efficient classification of Web services is crucial to improve the efficiency of service discovery. However, existing Web service classification approaches ignore the class overlap in Web services, resulting in poor accuracy of classification in practice. This paper aims to provide an approach to address this issue.

Design/methodology/approach

This paper proposes a label confusion and priori correction-based Web service classification approach. First, functional semantic representations of Web services descriptions are obtained based on BERT. Then, the ability of the model is enhanced to recognize and classify overlapping instances by using label confusion learning techniques; Finally, the predictive results are corrected based on the label prior distribution to further improve service classification effectiveness.

Findings

Experiments based on the ProgrammableWeb data set show that the proposed model demonstrates 4.3%, 3.2% and 1% improvement in Macro-F1 value compared to the ServeNet-BERT, BERT-DPCNN and CARL-NET, respectively.

Originality/value

This paper proposes a Web service classification approach for the overlapping categories of Web services and improve the accuracy of Web services classification.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 15 June 2023

Tatiana Garanina

This paper explores the relationship between earnings management and firms' value through the moderating effect of the missing elements – corporate social responsibility (CSR…

2341

Abstract

Purpose

This paper explores the relationship between earnings management and firms' value through the moderating effect of the missing elements – corporate social responsibility (CSR) disclosure and state ownership in Russian companies. The main argument of the paper is that CSR disclosure can be used as a mitigating mechanism to weaken the negative relationship between earnings manipulation and market value. Additionally test whether state ownership is an important moderating factor in this relationship are conducted as state has always played an important role in the emerging Russian market.

Design/methodology/approach

The hypotheses are tested on panel data for 223 publicly listed Russian firms for the period 2012–2018. A number of robustness tests are used to check the obtained results for consistency. Following previous research GMM method is employed to address endogeneity concerns.

Findings

Supported by stakeholder theory, it is observed that firms that disclosed more CSR information experience a weaker negative relationship between earnings management and market value because investors and other stakeholders positively evaluate a positive CSR image. This negative effect of earnings management on market value is even weaker for state-owned companies as market participants appreciate involvement of state-owned companies in CSR activities and place greater expectations on these firms to be responsible without clear understanding whether these actions are “window dressing” for this type of companies or not.

Originality/value

The study results provide new insights into the relation between earnings management, firm's value, CSR disclosure and state ownership in emerging-market firms. The paper highlight the importance of considering country-specific factors, such as state ownership, while analysing the market reaction on CSR disclosure and earnings management since the institutional peculiarities may help to explain differences in the obtained results.

Details

Journal of Accounting in Emerging Economies, vol. 14 no. 3
Type: Research Article
ISSN: 2042-1168

Keywords

Article
Publication date: 2 April 2024

Yi Liu, Rui Ning, Mingxin Du, Shuanghe Yu and Yan Yan

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork…

Abstract

Purpose

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork production, the development of efficient and robust meat cutting algorithms are hot issues. The uncertain and dynamic nature of the online porcine belly cutting imposes a challenge for the robot to identify and cut efficiently and accurately. Based on the above challenges, an online porcine belly cutting method using 3D laser point cloud is proposed.

Design/methodology/approach

The robotic cutting system is composed of an industrial robotic manipulator, customized tools, a laser sensor and a PC.

Findings

Analysis of experimental results shows that by comparing with machine vision, laser sensor-based robot cutting has more advantages, and it can handle different carcass sizes.

Originality/value

An image pyramid method is used for dimensionality reduction of the 3D laser point cloud. From a detailed analysis of the outward and inward cutting errors, the outward cutting error is the limiting condition for reducing the segments by segmentation algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Access

Year

Last week (1349)

Content type

Article (1349)
1 – 10 of over 1000