Search results

1 – 10 of 61
Article
Publication date: 7 April 2022

Pierre Jouan and Pierre Hallot

The purpose of this paper is to address the challenging issue of developing a quantitative approach for the representation of cultural significance data in heritage information…

Abstract

Purpose

The purpose of this paper is to address the challenging issue of developing a quantitative approach for the representation of cultural significance data in heritage information systems (HIS). The authors propose to provide experts in the field with a dedicated framework to structure and integrate targeted data about historical objects' significance in such environments.

Design/methodology/approach

This research seeks the identification of key indicators which allow to better inform decision-makers about cultural significance. Identified concepts are formalized in a data structure through conceptual data modeling, taking advantage on unified modeling language (HIS). The design science research (DSR) method is implemented to facilitate the development of the data model.

Findings

This paper proposes a practical solution for the formalization of data related to the significance of objects in HIS. The authors end up with a data model which enables multiple knowledge representations through data analysis and information retrieval.

Originality/value

The framework proposed in this article supports a more sustainable vision of heritage preservation as the framework enhances the involvement of all stakeholders in the conservation and management of historical sites. The data model supports explicit communications of the significance of historical objects and strengthens the synergy between the stakeholders involved in different phases of the conservation process.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 14 no. 3
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 15 April 2024

Amer Mecellem, Soufyane Belhenini, Douaa Khelladi and Caroline Richard

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic…

Abstract

Purpose

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.

Design/methodology/approach

In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.

Findings

The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.

Originality/value

This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.

Details

Microelectronics International, vol. 41 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2024

Supen Kumar Sah and Anup Ghosh

The purpose of this study is to investigate the bending analysis of metal (Ti-6Al-4V)-ceramic (ZrO2) functionally graded material (FGM) sandwich plate with material property…

Abstract

Purpose

The purpose of this study is to investigate the bending analysis of metal (Ti-6Al-4V)-ceramic (ZrO2) functionally graded material (FGM) sandwich plate with material property gradation along length and thickness direction under thermo-mechanical loading using inverse trigonometric shear deformation theory (ITSDT). FGM sandwich plate with a ceramic core and continuous variation of material properties has been modelled using Voigt’s micro-mechanical model following the power law distribution method. The impact of bi-directional gradation of material properties over the bending response of FGM plate under thermo-mechanical loading has been investigated in this work.

Design/methodology/approach

In this study, gradation of material properties for FGM plates is considered along length and thickness directions using Voigt’s micromechanical model following the power law distribution method. This type of FGM is called bi-directional FGMs (BDFGM). Mechanical and thermal properties of BDFGM sandwich plates are considered temperature-dependent in the present study. ITSDT is a non-polynomial shear deformation theory which requires a smaller number of field variables for modelling of displacement function in comparison to poly-nominal shear deformation theories which lead to a reduction in the complexity of the problem. In the present study, ITSDT has been utilized to obtain the governing equations for thermo-mechanical bending of simply supported uni-directional FGM (UDFGM) and BDFGM sandwich plates. Analytical solution for bending analysis of rectangular UDFGM and BDFGM sandwich plates has been carried out using Hamilton’s principle.

Findings

The bending response of the BDFGM sandwich plate under thermo-mechanical loading has been analysed and discussed. The present study shows that centre deflection, normal stress and shear stress are significantly influenced by temperature-dependent material properties, bi-directional gradation exponents along length and thickness directions, geometrical parameters, sandwich plate layer thickness, etc. The present investigation also reveals that bi-directional FGM sandwich plates can be designed to obtain thermo-mechanical bending response with an appropriate selection of gradation exponents along length and thickness direction. Non-dimensional centre deflection of BDFGM sandwich plates decreases with increasing gradation exponents in length and thickness directions. However, the non-dimensional centre deflection of BDFGM sandwich plates increases with increasing temperature differences.

Originality/value

For the first time, the FGM sandwich plate with the bi-directional gradation of material properties has been considered to investigate the bending response under thermo-mechanical loading. In the literature, various polynomial shear deformation theories like first-order shear deformation theory (FSDT), third-order shear deformation theory (TSDT) and higher-order shear deformation theory (HSDT) have been utilized to obtain the governing equation for bending response under thermo-mechanical loading; however, non-polynomial shear deformation theory like ITSDT has been used for the first time to obtain the governing equation to investigate the bending response of BDFGM. The impact of bi-directional gradation and temperature-dependent material properties over centre deflection, normal stress and shear stress has been analysed and discussed.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2022

Abdulwahed Fazeli, Saeed Banihashemi, Aso Hajirasouli and Saeed Reza Mohandes

This research aims to develop an automated and optimization algorithms (OAs)-integrated 4D building information modeling (BIM) approach and a prototype and enable construction…

Abstract

Purpose

This research aims to develop an automated and optimization algorithms (OAs)-integrated 4D building information modeling (BIM) approach and a prototype and enable construction managers and practitioners to estimate the time of compound elements in building projects using the resource specification technique.

Design/methodology/approach

A 4D BIM estimation process was first developed by applying the resource specification and geometric information from the BIM model. A suite of OA including particle swarm optimization, ant colony, differential evolution and genetic algorithm were developed and compared in order to facilitate and automate the estimation process. The developed processes and porotypes were linked and integrated.

Findings

The OA-based automated 4D BIM estimation prototype was developed and validated through a real-life construction project. Different OAs were applied and compared, and the genetic algorithm was found as the best performing one. The prototype was successfully linked with BIM timeliner application. By using this approach, the start and finish dates of all object-based activities are developed, and the project completion time is automatically estimated.

Originality/value

Unlike conventional construction estimation methods which need various tools and are error prone and time-consuming, the developed method bypasses the existing time estimation tools and provides the integrated and automated process with BIM and machine learning algorithms. Furthermore, this approach integrates 4D BIM applications into construction design procedures, connected with OA automation.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2023

Aamir Hassan and Javed Ahmad Bhat

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared…

Abstract

Purpose

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared to its counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate the performance of axially loaded, circular CFDST short columns, with the innovative strengthening technique of providing stiffeners in outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, while varying the length of rectangular steel stiffeners, fixed inside the outer tubes only, to check the effect of stiffeners in partially and full-length stiffened CFDST columns.

Design/methodology/approach

The behaviour of these CFDST columns is investigated numerically by using a verified finite element analysis (FEA) model from the ABAQUS. The behaviour of 20-unstiffened, 80-partially stiffened and 20-full-length stiffened CFDST columns is studied, while varying the strength of steel (fyo = 250–750 MPa) and concrete (30–90 MPa).

Findings

The FEA results are verified by comparing them with the previous test results. FEA study has exhibited that, there is a 7%–25% and 39%–49% increase in peak-loads in partially stiffened and full-length stiffened CFDST columns, respectively, compared to unstiffened CFDST columns.

Originality/value

Enhanced strength has been observed in partially stiffened and full-length stiffened CFDST columns as compared to unstiffened CFDST columns. Also, a significant effect of strength of concrete has not been observed as compared to the strength of steel.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 August 2023

Faisal Mehraj Wani, Jayaprakash Vemuri and Rajaram Chenna

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault…

Abstract

Purpose

Near-fault pulse-like ground motions have distinct and very severe effects on reinforced concrete (RC) structures. However, there is a paucity of recorded data from Near-Fault Ground Motions (NFGMs), and thus forecasting the dynamic seismic response of structures, using conventional techniques, under such intense ground motions has remained a challenge.

Design/methodology/approach

The present study utilizes a 2D finite element model of an RC structure subjected to near-fault pulse-like ground motions with a focus on the storey drift ratio (SDR) as the key demand parameter. Five machine learning classifiers (MLCs), namely decision tree, k-nearest neighbor, random forest, support vector machine and Naïve Bayes classifier , were evaluated to classify the damage states of the RC structure.

Findings

The results such as confusion matrix, accuracy and mean square error indicate that the Naïve Bayes classifier model outperforms other MLCs with 80.0% accuracy. Furthermore, three MLC models with accuracy greater than 75% were trained using a voting classifier to enhance the performance score of the models. Finally, a sensitivity analysis was performed to evaluate the model's resilience and dependability.

Originality/value

The objective of the current study is to predict the nonlinear storey drift demand for low-rise RC structures using machine learning techniques, instead of labor-intensive nonlinear dynamic analysis.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 April 2024

Naveen Srinivas Madugula, Yogesh Kumar, Vimal K.E.K and Sujeet Kumar

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six…

Abstract

Purpose

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six strategies, namely, heat treatment process, inter pass cooling process, inter pass cold rolling process, peening process, friction stir processing and oscillation process.

Design/methodology/approach

To overcome the lack of certainty associated with correlations and relationships in quality functional deployment, fuzzy numbers have been integrated with the quality functional deployment framework. Twenty performance measures have been identified from the literature under five groups, namely, mechanical properties, physical properties, geometrical properties, cost and material properties. Using house of quality weights are allocated to performance measures and groups, relationships are established between performance measures and strategies, and correlations are assigned between strategies. Finally, for each strategy, relative importance, score and crisp values are calculated.

Findings

Inter pass cold rolling process strategy is computed with the highest crisp value of 15.80 which is followed by peening process, heat treatment process, friction stir processing, inter pass cooling process,] and oscillation process strategy.

Originality/value

To the best of the authors’ knowledge, there has been no research in the literature that analyzes the strategies to improve the quality and productivity of the wire arc additive manufacturing process.

Access

Year

Last week (61)

Content type

Article (61)
1 – 10 of 61