Search results

1 – 10 of over 1000
Book part
Publication date: 1 May 2012

Kevin Jones

Midwest Independent Transmission System Operator, Inc. (MISO) is a nonprofit regional transmission organization (RTO) that oversees electricity production and transmission across…

Abstract

Midwest Independent Transmission System Operator, Inc. (MISO) is a nonprofit regional transmission organization (RTO) that oversees electricity production and transmission across 13 states and 1 Canadian province. MISO also operates an electronic exchange for buying and selling electricity for each of its five regional hubs.

MISO oversees two types of markets. The forward market, which is referred to as the day-ahead (DA) market, allows market participants to place demand bids and supply offers on electricity to be delivered at a specified hour the following day. The equilibrium price, known as the locational marginal price (LMP), is determined by MISO after receiving sale offers and purchase bids from market participants. MISO also coordinates a spot market, which is known as the real-time (RT) market. Traders in the RT market must submit bids and offers by 30minutes prior to the hour for which the trade will be executed. After receiving purchase and sale offers for a given hour in the RT market, MISO then determines the LMP for that particular hour.

The existence of the DA and RT markets allows producers and retailers to hedge against the large fluctuations that are common in electricity prices. Hedge ratios on the MISO exchange are estimated using various techniques. No hedge ratio technique examined consistently outperforms the unhedged portfolio in terms of variance reduction. Consequently, none of the hedge ratio methods in this study meet the general interpretation of FASB guidelines for a highly effective hedge.

Details

Research in Finance
Type: Book
ISBN: 978-1-78052-752-9

Article
Publication date: 21 December 2017

Marc Gürtler and Thomas Paulsen

Empirical publications on the time series modeling and forecasting of electricity prices vary widely regarding the conditions, and the findings make it difficult to generalize…

Abstract

Purpose

Empirical publications on the time series modeling and forecasting of electricity prices vary widely regarding the conditions, and the findings make it difficult to generalize results. Against this background, it is surprising that there is a lack of statistics-based literature reviews on the forecasting performance when comparing different models. The purpose of the present study is to fill this gap.

Design/methodology/approach

The authors conduct a comprehensive literature analysis from 2000 to 2015, covering 86 empirical studies on the time series modeling and forecasting of electricity spot prices. Various statistics are presented to characterize the empirical literature on electricity spot price modeling, and the forecasting performance of several model types and modifications is analyzed. The key issue of this study is to offer a comparison between different model types and modeling conditions regarding their forecasting performance, which is referred to as a quasi-meta-analysis, i.e. the analysis of analyses to achieve more general findings independent of the circumstances of single studies.

Findings

The authors find evidence that generalized autoregressive conditional heteroscedasticity models outperform their autoregressive–moving-average counterparts and that the consideration of explanatory variables improves forecasts.

Originality/value

To the best knowledge of the authors, this paper is the first to apply the methodology of meta-analyses in a literature review of the empirical forecasting literature on electricity spot markets.

Details

International Journal of Energy Sector Management, vol. 12 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 1 October 2018

Marc Gürtler and Thomas Paulsen

Study conditions of empirical publications on time series modeling and forecasting of electricity prices vary widely, making it difficult to generalize results. The key purpose of…

Abstract

Purpose

Study conditions of empirical publications on time series modeling and forecasting of electricity prices vary widely, making it difficult to generalize results. The key purpose of the present study is to offer a comparison of different model types and modeling conditions regarding their forecasting performance.

Design/methodology/approach

The authors analyze the forecasting performance of AR (autoregressive), MA (moving average), ARMA (autoregressive moving average) and GARCH (generalized autoregressive moving average) models with and without the explanatory variables, that is, power consumption and power generation from wind and solar. Additionally, the authors vary the detailed model specifications (choice of lag-terms) and transformations (using differenced time series or log-prices) of data and, thereby, obtain individual results from various perspectives. All analyses are conducted on rolling calibrating and testing time horizons between 2010 and 2014 on the German/Austrian electricity spot market.

Findings

The main result is that the best forecasts are generated by ARMAX models after spike preprocessing and differencing the data.

Originality/value

The present study extends the existing literature on electricity price forecasting by conducting a comprehensive analysis of the forecasting performance of different time series models under varying market conditions. The results of this study, in general, support the decision-making of electricity spot price modelers or forecasting tools regarding the choice of data transformation, segmentation and the specific model selection.

Details

International Journal of Energy Sector Management, vol. 12 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Book part
Publication date: 27 August 2014

Kevin Jones

This chapter focuses on the common occurrence of wholesale electricity prices that fall below the cost of production. This “negative pricing” in effect represents payment to…

Abstract

This chapter focuses on the common occurrence of wholesale electricity prices that fall below the cost of production. This “negative pricing” in effect represents payment to high-volume consumers for taking excess power off the grid, thus relieving overload. Occurrences of negative pricing have been observed since the wholesale electricity markets have been operating, and occur during periods of low demand, while generators are being kept in reserve for rapid engagement when demand increases (it is expensive and time-consuming to shut down generators and then restart them, so they are often kept in “spooling mode”). In such situations power production may temporarily exceed demand, potentially overloading the system. When the federal government began subsidizing the construction of wind generation projects, with regulations in place requiring transmission grids to accept all of the electricity produced by the wind generators, negative pricing became more frequent.

Details

Research in Finance
Type: Book
ISBN: 978-1-78190-759-7

Book part
Publication date: 19 March 2018

Kevin Jones

This chapter examines the efficiency of the Midcontinent Independent System Operator (MISO), Inc., electricity exchange following its major expansion in terms of market…

Abstract

This chapter examines the efficiency of the Midcontinent Independent System Operator (MISO), Inc., electricity exchange following its major expansion in terms of market participants and geographic scope in 2014. Specifically, hourly day-ahead (forward) and real-time (spot) prices from 2014 to 2016 reveal that forward premiums are prevalent despite the increase in market size. Furthermore, these forward premiums do not adhere to Bessembinder and Lemmon’s (2002) commonly used general equilibrium model for electricity forward premia. A technical trading rule based on the relationship between day-ahead prices across hubs that was found to be profitable prior to MISO’s expansion still produces economically and statistically significant returns after the exchange’s growth.

Article
Publication date: 19 August 2021

Hendrik Kohrs, Benjamin Rainer Auer and Frank Schuhmacher

In short-term forecasting of day-ahead electricity prices, incorporating intraday dependencies is vital for accurate predictions. However, it quickly leads to dimensionality…

Abstract

Purpose

In short-term forecasting of day-ahead electricity prices, incorporating intraday dependencies is vital for accurate predictions. However, it quickly leads to dimensionality problems, i.e. ill-defined models with too many parameters, which require an adequate remedy. This study addresses this issue.

Design/methodology/approach

In an application for the German/Austrian market, this study derives variable importance scores from a random forest algorithm, feeds the identified variables into a support vector machine and compares the resulting forecasting technique to other approaches (such as dynamic factor models, penalized regressions or Bayesian shrinkage) that are commonly used to resolve dimensionality problems.

Findings

This study develops full importance profiles stating which hours of which past days have the highest predictive power for specific hours in the future. Using the profile information in the forecasting setup leads to very promising results compared to the alternatives. Furthermore, the importance profiles provide a possible explanation why some forecasting methods are more accurate for certain hours of the day than others. They also help to explain why simple forecast combination schemes tend to outperform the full battery of models considered in the comprehensive comparative study.

Originality/value

With the information contained in the variable importance scores and the results of the extensive model comparison, this study essentially provides guidelines for variable and model selection in future electricity market research.

Article
Publication date: 20 November 2009

Sanjeev Kumar Aggarwal, L.M. Saini and Ashwani Kumar

Several research papers related to electricity price forecasting have been reported in the leading journals in last 20 years. The purpose of this paper is to present a…

1258

Abstract

Purpose

Several research papers related to electricity price forecasting have been reported in the leading journals in last 20 years. The purpose of this paper is to present a comprehensive survey and comparison of these techniques.

Design/methodology/approach

The present article provides an overview of the statistical short‐term price forecasting (STPF) models. The basic theory of these models, their further classification and their suitability to STPF has been discussed. Quantitative evaluation of the performance of these models in the framework of accuracy achieved and computation time taken has been performed. Some important observations of the literature survey and key issues regarding STPF methodologies are analyzed.

Findings

It has been observed that price forecasting accuracy of the reported models in day‐ahead markets is better as compared to that in real time markets. From a comparative analysis perspective, there is no hard evidence of out‐performance of one model over all other models on a consistent basis for a very long period. In some of the studies, linear models like dynamic regression and transfer function have shown superior performance as compared to non‐linear models like artificial neural networks (ANNs). On the other hand, recent variations in ANNs by employing wavelet transformation, fuzzy logic and genetic algorithm have shown considerable improvement in forecasting accuracy. However more complex models need further comparative analysis.

Originality/value

This paper is intended to supplement the recent survey papers, in which the researchers have restricted the scope to a bibliographical survey. Whereas, in this work, after providing detailed classification and chronological evolution of the STPF techniques, a comparative summary of various price‐forecasting techniques, across different electricity markets, is presented.

Details

International Journal of Energy Sector Management, vol. 3 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 5 September 2016

Åsa Grytli Tveten, Jon Gustav Kirkerud and Torjus Folsland Bolkesjø

This study aims to investigate the effects of thermal–hydro interconnection on the revenues, market value and curtailment of variable renewable energy (VRE). The increasing market…

Abstract

Purpose

This study aims to investigate the effects of thermal–hydro interconnection on the revenues, market value and curtailment of variable renewable energy (VRE). The increasing market shares of VRE sources in the Northern European power system cause declining revenues for VRE producers, because of the merit-order effect. A sparsely studied flexibility measure for mitigating the drop in the VRE market value is increased interconnection between thermal- and hydropower-dominated regions.

Design/methodology/approach

A comprehensive partial equilibrium model with a high spatial and temporal resolution is applied for the analysis.

Findings

Model simulation results for 2030 show that thermal–hydro interconnection will cause exchange patterns that to a larger extent follow VRE production patterns, causing significantly reduced VRE curtailment. Wind value factors are found to decrease in the hydropower-dominated regions and increase in thermal power-dominated regions. Because of increased average electricity prices in most regions, the revenues are, however, found to increase for all VRE technologies. By only assuming the planned increases in transmission capacity, total VRE revenues are found to increase by 3.3 per cent and VRE electricity generation increases by 3.7 TWh.

Originality/value

The current study is, to the authors' knowledge, the first to analyze the effect of interconnection between thermal- and hydropower-dominated regions on the VRE market value, and the authors conclude that this is a promising flexibility measure for mitigating the value-drop of VRE caused by the merit-order effect. The study results demonstrate the importance of taking the whole power system into consideration when planning future transmission capacity expansions.

Details

International Journal of Energy Sector Management, vol. 10 no. 3
Type: Research Article
ISSN: 1750-6220

Keywords

Content available
Book part
Publication date: 19 March 2018

Abstract

Details

Global Tensions in Financial Markets
Type: Book
ISBN: 978-1-78714-839-0

Article
Publication date: 27 August 2021

Rui Xiang, Colin Jones, Rogemar Mamon and Marierose Chavez

This paper aims to put forward and compare two accessible approaches to model and forecast spot prices in the fishing industry. The first modelling approach is a Markov-switching…

Abstract

Purpose

This paper aims to put forward and compare two accessible approaches to model and forecast spot prices in the fishing industry. The first modelling approach is a Markov-switching model (MSM) in which a Markov chain captures different economic regimes and a stochastic convenience yield is embedded in the spot price. The second approach is based on a multi-factor model (MFM) featuring three correlated stochastic factors.

Design/methodology/approach

The two proposed approaches are analysed in terms of parameter-estimation accuracy, information criteria and prediction performance. For MSM’s calibration, the quasi-log-likelihood method was applied directly while for the MFM’s parameter estimation, this paper designs an enhanced multi-variate maximum likelihood method with the aid of moments matching. The numerical experiments make use of both simulated and actual data compiled by the Fish Pool ASA. Data on both the Fish Pool’s forwards and Norwegian T-bill yields were additionally used in the MFM’s implementation.

Findings

Using simulated data sets, the MSM estimation gives more accurate results than the MFM estimation in terms of the norm in ℓ2 between the “true” and “computed” parameter estimates and significantly lower standard errors. With actual data sets used to evaluate the forecast values, both approaches have similar performances based on the error analysis. Under some metrics balancing goodness of fit and model complexity, the MFM outperforms the MSM.

Originality/value

With the aid of simulated and observed data sets examined in this paper, insights are gained concerning the appropriateness, as well as the benefits and weaknesses of the two proposed approaches. The modelling and estimation methodologies serve as prelude to reliable frameworks that will support the pricing and risk management of derivative contracts on fish price evolution, which creates price risk transfer mechanisms from the fisheries/aquaculture sector to the financial industry.

1 – 10 of over 1000