Search results

1 – 10 of 825
Book part
Publication date: 5 October 2018

Nasir Bedewi Siraj, Aminah Robinson Fayek and Mohamed M. G. Elbarkouky

Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective…

Abstract

Most decision-making problems in construction are complex and difficult to solve, as they involve multiple criteria and multiple decision makers in addition to subjective uncertainties, imprecisions and vagueness surrounding the decision-making process. In many instances, the decision-making process is based on linguistic terms rather than numerical values. Hence, structured fuzzy consensus-reaching processes and fuzzy aggregation methods are instrumental in multi-criteria group decision-making (MCGDM) problems for capturing the point of view of a group of experts. This chapter outlines different fuzzy consensus-reaching processes and fuzzy aggregation methods. It presents the background of the basic theory and formulation of these processes and methods, as well as numerical examples that illustrate their theory and formulation. Application areas of fuzzy consensus reaching and fuzzy aggregation in the construction domain are identified, and an overview of previously developed frameworks for fuzzy consensus reaching and fuzzy aggregation is provided. Finally, areas for future work are presented that highlight emerging trends and the imminent needs of fuzzy consensus reaching and fuzzy aggregation in the construction domain.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 5 October 2018

Long Chen and Wei Pan

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be…

Abstract

With numerous and ambiguous sets of information and often conflicting requirements, construction management is a complex process involving much uncertainty. Decision makers may be challenged with satisfying multiple criteria using vague information. Fuzzy multi-criteria decision-making (FMCDM) provides an innovative approach for addressing complex problems featuring diverse decision makers’ interests, conflicting objectives and numerous but uncertain bits of information. FMCDM has therefore been widely applied in construction management. With the increase in information complexity, extensions of fuzzy set (FS) theory have been generated and adopted to improve its capacity to address this complexity. Examples include hesitant FSs (HFSs), intuitionistic FSs (IFSs) and type-2 FSs (T2FSs). This chapter introduces commonly used FMCDM methods, examines their applications in construction management and discusses trends in future research and application. The chapter first introduces the MCDM process as well as FS theory and its three main extensions, namely, HFSs, IFSs and T2FSs. The chapter then explores the linkage between FS theory and its extensions and MCDM approaches. In total, 17 FMCDM methods are reviewed and two FMCDM methods (i.e. T2FS-TOPSIS and T2FS-PROMETHEE) are further improved based on the literature. These 19 FMCDM methods with their corresponding applications in construction management are discussed in a systematic manner. This review and development of FS theory and its extensions should help both researchers and practitioners better understand and handle information uncertainty in complex decision problems.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Book part
Publication date: 5 October 2018

Mohammad Raoufi, Nima Gerami Seresht, Nasir Bedewi Siraj and Aminah Robinson Fayek

Several different simulation techniques, such as discrete event simulation (DES), system dynamics (SD) and agent-based modelling (ABM), have been used to model complex…

Abstract

Several different simulation techniques, such as discrete event simulation (DES), system dynamics (SD) and agent-based modelling (ABM), have been used to model complex construction systems such as construction processes and project management practices; however, these techniques do not take into account the subjective uncertainties that exist in many construction systems. Integrating fuzzy logic with simulation techniques enhances the capabilities of those simulation techniques, and the resultant fuzzy simulation models are then capable of handling subjective uncertainties in complex construction systems. The objectives of this chapter are to show how to integrate fuzzy logic and simulation techniques in construction modelling and to provide methodologies for the development of fuzzy simulation models in construction. In this chapter, an overview of simulation techniques that are used in construction is presented. Next, the advancements that have been made by integrating fuzzy logic and simulation techniques are introduced. Methodologies for developing fuzzy simulation models are then proposed. Finally, the process of selecting a suitable simulation technique for each particular aspect of construction modelling is discussed.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Book part
Publication date: 5 October 2018

Long D. Nguyen, Long Le-Hoai, Dai Q. Tran, Chau N. Dang and Chau V. Nguyen

Managing complex construction projects is a challenging task because it involves multiple factors and decision-making processes. A systematic evaluation of these complex factors…

Abstract

Managing complex construction projects is a challenging task because it involves multiple factors and decision-making processes. A systematic evaluation of these complex factors is imperative for achieving project success. As most of these factors are qualitative or intangible in nature, decision makers often rely on subjective judgements when comparing and evaluating them. The hybrid techniques that integrate fuzzy set theory and the analytic hierarchy process (AHP) are able to deal with such problems. This chapter discusses various hybrid techniques of the fuzzy AHP and presents an application of these techniques to the evaluation of transportation project complexity, which is essential for prioritising resource allocation and assessing project performance. Project complexity can be quantified and visualised effectively with the application of the fuzzy AHP. This chapter enhances the understanding of construction project complexity and fuzzy hybrid computing in construction engineering and management. Future research should address the calibration of fuzzy membership functions in pairwise comparisons for each individual decision maker and develop computational tools for solving optimisation problems in the constrained fuzzy AHP. In the area of construction project complexity, future research should investigate how scarce resources are allocated to better manage complex projects and how appropriate resource allocation improves their performance.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Book part
Publication date: 28 June 2023

Babak Zamani

This chapter aims to identify, analyse, classify and rank the sustainability indices and internationalisation challenges of the footwear industry in the emerging economy of Iran…

Abstract

This chapter aims to identify, analyse, classify and rank the sustainability indices and internationalisation challenges of the footwear industry in the emerging economy of Iran. This would provide deeper decision-making insights into Iranian footwear businesses. First, a list of sustainability indices and internationalisation challenges was obtained by reviewing the literature. Then, a combination of multi-criteria decision-making (MCDM) approaches was implemented. The initial sustainability indices and internationalisation challenges were screened using the fuzzy Delphi method, keeping a total of 14 criteria. The best–worst method (BWM) was employed to weigh and rank the criteria. The interpretive structural modelling (ISM) technique and cross-impact matrix applied in MICMAC were employed to visualise the conceptual model based on the levels and classification of the important criteria for the internationalisation of the Iranian footwear industry. The 14 criteria were demonstrated to be important in internationalisation. The most critical sustainability indices were reducing hazardous substances in leather tanning and labour education and training. In contrast, exchange rate instability in Iran’s economy and strict chemical regulations for clothing and footwear were found to be the most important internationalisation challenges. Hence, these criteria should be considered in the internationalisation strategies of the Iranian footwear industry. A combined multilayer sustainable decision-making approach was used to analyse the Iranian footwear industry’s essential sustainability indices and internationalisation challenges. Furthermore, implications and insights are offered to footwear businesses for future decision-making.

Details

Decision-Making in International Entrepreneurship: Unveiling Cognitive Implications Towards Entrepreneurial Internationalisation
Type: Book
ISBN: 978-1-80382-234-1

Keywords

Book part
Publication date: 13 May 2019

Hasan Dinçer and Serhat Yüksel

The purpose of the study is to analyze the risk of violent conflict with the global conflict risk factors in the Middle East economies by using an integrated fuzzy decision…

Abstract

The purpose of the study is to analyze the risk of violent conflict with the global conflict risk factors in the Middle East economies by using an integrated fuzzy decision approach. For this purpose, five different dimensions and 24 different criteria are defined by analyzing similar studies in the literature. The dataset is borrowed from the European Commission, and experts appointed for the linguistic evaluation of each dimension and criterion. Additionally, fuzzy Decision Making Trial and Evaluation Laboratory (DEMATEL) methodology is used to weigh dimensions and criteria and Multi-objective Optimization on the basis of Ratio Analysis (MOORA) approach is considered to rank the countries with respect to the conflict risk. Social dimension was concluded to have the highest importance of the Global Conflict Risk Index. Moreover, Syria, Libya, and Saudi Arabia were identified as the countries that have high conflict risk. Because these countries have high risk of facing conflict in the future, it is strongly recommended that they should primarily focus on social factors in order to minimize this risk.

Details

The Impact of Global Terrorism on Economic and Political Development
Type: Book
ISBN: 978-1-78769-919-9

Keywords

Book part
Publication date: 15 December 1998

Jarkko Niittymäki

Traffic signal control is one of the oldest application areas of fuzzy sets in transportation. In general, fuzzy control is found to be superior in complex problems with…

Abstract

Traffic signal control is one of the oldest application areas of fuzzy sets in transportation. In general, fuzzy control is found to be superior in complex problems with multi-objective decisions. In traffic signal control, several traffic flows compete for the same time and space, and different priorities are often set to different traffic flows or vehicle groups

The public transport priorities are a very important part of the effective traffic signal control. Normally, the public transport priorities are programmed by using special algorithms, which are tailor-made for each intersection. The experiences have proved that this kind of algorithms can be very effective if some compensation algorithms and the traffic-actuated control mode are used. We believe that using the fuzzified public transport priority algorithms, the measures of effectiveness of traffic signal control can be even better. In this paper, our fuzzy control algorithm of the public transport priorities will be presented.

Details

Mathematics in Transport Planning and Control
Type: Book
ISBN: 978-0-08-043430-8

1 – 10 of 825