Search results

1 – 10 of 120
Article
Publication date: 18 July 2023

Chaofan Jia, Shaolin Li, Xiuhua Guo, Juanhua Su and Kexing Song

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites…

52

Abstract

Purpose

The effect of different service parameters on the current-carrying tribological properties of CF-Al2O3/Cu composites was investigated, and the damage behavior of the composites under different service parameters was probed. The purpose of this study is to provide a theoretical basis for the application of CF-Al2O3/Cu composites.

Design/methodology/approach

The composites were fabricated by internal oxidation combined with powder metallurgy. The current-carrying tribological properties of CF-Al2O3/Cu composites were investigated on an electrical damage test system at different loads and currents.

Findings

As the load increases, the wear mechanism of the composite changes from abrasive wear to delamination wear. As the current increases, the oxidation wear and arc erosion of the composites gradually intensified. Under the service parameters of 0–25 A and 30–40 N, the composite has relatively stable current-carrying tribological properties.

Originality/value

This paper could provide a theoretical basis for the practical application of CF-Al2O3/Cu composites.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 October 2023

Xiuwei Shi, Wujian Ding, Chunjie Xu, Fangwei Xie and Zuzhi Tian

In the process of conveying the solid–liquid two-phase medium of the centrifugal slurry pump, the wear of the flow-passing parts is an important problem affecting its life and…

Abstract

Purpose

In the process of conveying the solid–liquid two-phase medium of the centrifugal slurry pump, the wear of the flow-passing parts is an important problem affecting its life and safe operation. Therefore, a numerical investigation on the wear characteristics of the centrifugal slurry pump under different particle conditions was conducted.

Design/methodology/approach

A solid-liquid two-phase model based on CFD-DEM coupling is established and used to analyze the flow field and the wear characteristics of the flow-passing parts with different particle densities, volume fractions and sizes.

Findings

Particle conditions will affect the pump flow field. To analyze the pump wear characteristics, the wear distribution, wear value and cumulative force laws of flow-passing parts under different particle conditions are obtained. In each flow-passing part, with the increase of particle density, volume fraction and size, the wear area is concentrated and the wear depth increases. Under different particle conditions, the wear is mainly on the volute chamber and the blade pressure surface, and the tangential cumulative force of flow-passing parts is much larger than the normal cumulative force.

Originality/value

An accurate model and a coupled simulation method for predicting the wear of the slurry pump are obtained, and the wear characteristic law can provide a reference for the design of the slurry pump to reduce friction.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2024

Gabi N. Nehme and Najat G. Nehme

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P…

Abstract

Purpose

The purpose of variable loading conditions (392 N-785N-392N-785N) with break-in period were used to study interactions between zinc dialkyl dithiophosphate (ZDDP) 0.1 P% (phosphorus) and fine-grade molybdenum disulfide (MoS2) 3%, in different mixtures of NLGI 2 lithium stearate grease. Four-ball wear tests were used to evaluate the tribological properties of different grease mixtures such as coefficient of friction and wear. ASTM 2266 as reported by earlier studies is useful, but it is not representative of real-life applications where variable loads and speeds and different break-in periods play a role and could change the results and the nature of tribofilms.

Design/methodology/approach

In this study, chemical and mechanical properties of tribofilms were examined. Moreover, design of experiment was used to examine the data and shorten experimentation time. Research described here is investigating variable loading conditions for real-life applications by using a break-in period of 2 min at the start to minimize asperities and establish a clean surface. Design expert (DOE) analyzes responses to reveal those variables that are single factor and those that are multifactor whether synergistically or antagonistically.

Findings

The results indicated that spectrum loading with break-in period showed reduction in wear when tested in greases with ZDDP/MoS2 combinations. Ramping up or down the load every 7.5 min for a rotational speed of 1,200 rpm and a total of 36,000 revolutions or 30-min time slowed the wear properties of lithium-based grease under different MoS2 and ZDDP concentrations. Experiments indicated that wear was largely dependent on the loading condition and ZDDP additives during specific break-in period at 1,200 rotational speed. It is believed that MoS2 greases perform better under spectrum loading and under constant loading when mixed with ZDDP phosphorus.

Originality/value

This research indicates that there is a synergistic interaction between ZDDP, MoS2 and variable loading especially when a break-in period is applied. The results indicated that wear was largely dependent on the specific speed used with spectrum loading as presented in the energy dispersive spectroscopy and the Auger electron spectroscopy analysis, and thus a 3% MoS2 grease with ZDDP (phosphorus: 0.1 Wt.%) are needed to improve the wear resistance and improve the friction characteristics.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0016/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 25 December 2023

Jiahe Wang, Huajian Li, Chengxian Ma, Chaoxun Cai, Zhonglai Yi and Jiaxuan Wang

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Abstract

Purpose

This study aims to analyze the factors, evaluation techniques of the durability of existing railway engineering.

Design/methodology/approach

China has built a railway network of over 150,000 km. Ensuring the safety of the existing railway engineering is of great significance for maintaining normal railway operation order. However, railway engineering is a strip structure that crosses multiple complex environments. And railway engineering will withstand high-frequency impact loads from trains. The above factors have led to differences in the deterioration characteristics and maintenance strategies of railway engineering compared to conventional concrete structures. Therefore, it is very important to analyze the key factors that affect the durability of railway structures and propose technologies for durability evaluation.

Findings

The factors that affect the durability and reliability of railway engineering are mainly divided into three categories: material factors, environmental factors and load factors. Among them, material factors also include influencing factors, such as raw materials, mix proportions and so on. Environmental factors vary depending on the service environment of railway engineering, and the durability and deterioration of concrete have different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapid detection methods for five common diseases in railway engineering are also proposed in this paper. These methods can quickly evaluate the durability of existing railway engineering concrete.

Originality/value

The research can provide some new evaluation techniques and methods for the durability of existing railway engineering.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 22 September 2023

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Atiqah A., Azman Jalar, Muhamed Abdul Fatah Muhamed Mukhtar and Fakhrozi Che Ani

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Abstract

Purpose

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Design/methodology/approach

The fine-pitch stencil used in this work is fabricated by electroform process and subsequently nano-coated using the PVD process. Stencil printing process was then performed to print the solder paste onto the printed circuit board (PCB) pad. The solder paste release was observed by solder paste inspection (SPI) and analyzed qualitatively and quantitatively. The printing cycle of up to 80,000 cycles was used to investigate the life span of stencil printing.

Findings

The finding shows that the performance of stencil printing in terms of solder printing quality is highly dependent on the surface roughness of the stencil aperture. PVD-coated stencil aperture can prolong the life span of stencil printing with an acceptable performance rate of about 60%.

Originality/value

Stencil printing is one of the important processes in surface mount technology to apply solder paste on the PCB. The stencil’s life span greatly depends on the type of solder paste, stencil printing cycles involved and stencil conditions such as the shape of the aperture, size and thickness of the stencil. This study will provide valuable insight into the relationship between the coated stencil wall aperture via PVD process on the life span of fine-pitch stencil printing.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 10 April 2023

Sun Chengwen, Li Wei and Kong Dejun

This paper aims to investigate the effect of Ti3SiC2 on the high-temperature tribological behaviors of NiCr coating, which was beneficial to improve the friction-wear performance…

Abstract

Purpose

This paper aims to investigate the effect of Ti3SiC2 on the high-temperature tribological behaviors of NiCr coating, which was beneficial to improve the friction-wear performance of hot work mold.

Design/methodology/approach

NiCr-Ti3SiC2 coatings were prepared on H13 steel substrate by laser cladding. The microstructure, phases and hardness of obtained coatings were analyzed using a super-depth of field microscope, X-ray diffraction and microhardness tester, respectively, and the tribological performance of obtained coatings at 500°C was investigated using a high-temperature tester.

Findings

The results show the NiCr-Ti3SiC2 coatings are comprised of γ-Ni solid, solution, TixNiy, TiC and Ti3SiC2 phases, and the coating hardness is increased with the increase of Ti3SiC2 mass fraction, which is contributed to the fine-grain and dispersion strengthening effect by the addition of Ti3SiC2. The NiCr-Ti3SiC2 coatings present excellent friction reduction and wear resistance by the synergetic action of Ti3SiC2 lubricant and hard phase, and the wear mechanism is predominated by abrasive wear and oxidation wear.

Originality/value

Ti3SiC2 phase was used to reinforce the tribological performance of H13 steel at high temperature, and the roles of friction reduction and wear resistance were discussed.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0004/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 November 2021

MD Sameer, Anil Kumar Birru, G. Srinu and Ch Naresh

The electric discharge machining (EDM) involves electrons discharged from the electrode and machining progresses due to the removal of the material from the component. This a…

Abstract

Purpose

The electric discharge machining (EDM) involves electrons discharged from the electrode and machining progresses due to the removal of the material from the component. This a thermal-based machining process primarily used for hard to machine components with conventional methods. This process is used to make intricate cavities and contours. The fabricated part is the replica of the tool material with high surface finish and good dimensional accuracy. This study aims to evaluate the comprehensive effect of process parameters on electric discharge machining of maraging steel.

Design/methodology/approach

Multiple criteria Decision making (MCDM) techniques are used to select the best parameters by comparing several responses to achieve the desired goal. There are different MCDM techniques available for optimization of machining parameters. In the current investigation, multi-objective optimization by data envelopment analysis based ranking (DEAR) approach was used for machining Maraging C300 grade steel.

Findings

The Taguchi L9 runs were planned with process parameters such as current (Amp), Tool diameter (mm) and Dielectric pressure (MPa). The effect of process parameters on the responses, namely, material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) were evaluated. High MRR is found at 15 A current, 14 mm tool diameter and dielectric pressure of 0.2 MPa. Optimum process parameters experiment showed reduced crack density.

Originality/value

An effort was made successfully to enhance the responses using the DEAR method and establish the decision making of selecting the optimal parameters by comparing the results obtained by machining maraging steel C300 grade.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 October 2023

Ergin Kosa and Ali Gökşenli

Erosion and abrasion are the prominent wear mechanisms reducing the lifetime of machine components. Both wear mechanisms are playing a role meanwhile, generating a synergy…

Abstract

Purpose

Erosion and abrasion are the prominent wear mechanisms reducing the lifetime of machine components. Both wear mechanisms are playing a role meanwhile, generating a synergy, leading to a material removal on the target. The purpose of study is to create a mathematical expression for erosive abrasive wear.

Design/methodology/approach

Many factors such as environmental cases and material character have an influence in erosive abrasive wear. In the work, changes in abrasive size and material hardness have been analyzed. As an abrasive particle, quartz sand has been used. All tests have been done in 20 wt.% slurry. Heat treatment has been applied to different steel specimens (steel grades C15, St 37 and Ck45) to change hardness value, which ranged from 185 to 880 Vickers hardness number.

Findings

After the four-hour test, it is determined that by an increase in abrasive size and decrease in material hardness, wear rate increases. Worn surfaces of the targets have been examined to figure out the wear mechanisms at different conditions under scanning electron microscopy. The results indicate that by an increase in material hardness, the number and diameter of micro-craters on the worn surfaces decrease. The diameters of micro-craters have been about 3–8 µm in hard materials and about 120–140 µm in soft materials.

Research limitations/implications

It is determined that by an increase in abrasive size and decrease in material hardness, wear rate increases. The results indicate that by an increase in material hardness, the number and diameter of micro-craters on the worn surfaces decrease.

Practical implications

The study enables to indicate the dominant factor in worn steel used in mechanical components.

Originality/value

After analyzing the test results, a novel mathematical expression, considering both abrasive size and material hardness, has been developed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 31 July 2023

Wenzhe Ji

The purpose of this study is to further improve the performance of surface texture, the chemical polishing method was introduced and the effect of it on the surface morphology and…

Abstract

Purpose

The purpose of this study is to further improve the performance of surface texture, the chemical polishing method was introduced and the effect of it on the surface morphology and tribological properties of the surface texture was investigated.

Design/methodology/approach

The surface texture was processed on the surface of 304 stainless steel with laser technology in air medium. Hydrochloric acid solution (pH 2.4 ± 0.05) was selected and used to soak the prepared texture samples for 12 h. The surface morphology and elemental content of the samples were measured with the white light interferometry, SEM and EDS. To obtain the effect of acid corrosion on the tribological properties of textured surfaces, the samples were tested under dry friction and oil lubrication conditions.

Findings

The detailed study shows that the melt and burr of surface texture produced with laser processing was reduced due to the corrosion effect of hydrochloric acid. Therefore, the better interfacial tribological properties was obtained due to the improvement of surface-textured morphology.

Originality/value

The main contribution of this work is to provide a new reference for improving surface texture quality. It also lays a foundation for improving the tribological properties of the textured interface.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2023-0094/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 October 2023

Sara Pope and Robert L. Jackson

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear…

Abstract

Purpose

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear test has been established, it can be used to test any combination of materials or coatings. The effectiveness of several different test methods will also be evaluated, including the sample height, surface roughness and mass difference. In addition, the current work will observe the differences between applying sand before the samples are brought into contact or after. The wear rates obtained from these tests could also be used to predict the wear of other components in similar abrasive particulate environments.

Design/methodology/approach

A modified block-on-flat wear test of anodized aluminum on hard coat anodized aluminum was used to study this. The experiments were performed with and without sand to study the effects of the sand. Two methods of adding sand were also evaluated. Weighing and profilometry were used to study the differences between the tests.

Findings

Wear rates have been calculated based on both the change in the masses of the samples and the change in the height between the upper and lower samples over the course of each test. The wear rates from the change in the masses are repeatable with and without sand, but the results for the change in height show no repeatability without sand. In addition, only in the presence of sand do the trends for the two methods agree. The wear rate was found to be non-linear as a function of load and therefore not in agreement with Archard’s Wear Law. The wear rate also increased significantly when sand was present in the contact for the duration of the test. The sand appears to change the wear mechanism from an adhesive to an abrasive mechanism. Black wear particles formed both when there was sand and when there was not sand. The source of these particles has been investigated but not determined.

Originality/value

This work has not been previously published and is the original work of the authors.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 120