Search results

1 – 7 of 7
Article
Publication date: 6 September 2021

Jingying Xu, Zimin Jin, Jing Jin, Lei Lei and Jianwei Tao

People have always been invaded by mosquitoes, and the development of new anti-mosquito fabrics has attracted much attention. The purpose of this paper is to study the effect of…

Abstract

Purpose

People have always been invaded by mosquitoes, and the development of new anti-mosquito fabrics has attracted much attention. The purpose of this paper is to study the effect of knitting process on the performance of anti-mosquito seamless fabrics and provide a basis for obtaining anti-mosquito seamless knitted fabrics with excellent comprehensive performance.

Design/methodology/approach

This paper uses bamboo–polyester mosquito repellent yarn containing wormwood extract as the face of seamless knitted fabric. The test factors include ordinary material in the face yarn, ground yarn material, seamless knitted structure and arrangement ratio of ordinary yarn and anti-mosquito yarn in face yarn. According to the quasi-level additional orthogonal test, 12 knitting plans are determined, and the mosquito repellent test and durability test are performed on the fabric.

Findings

The experimental results show that the optimal fabric for anti-mosquito performance is 12#, and the average repellent rate after washing 15 times is 58.57%. The corresponding process is that the face yarn is fully anti-mosquito yarn, the fabric is a single-sided mesh structure and the ground yarn is made of 4.4tex moisture-absorbing nylon/2.2tex spandex wrapped yarn.

Research limitations/implications

In this paper, there is still a lack of diversity in the selection of yarn materials and fabrics. In the follow-up research, the authors will use more fabrics and yarn materials for combination and experimentation and simulate and predict the mosquito resistance rate of knitted fabrics with different materials and structures.

Practical implications

The development of anti-mosquito seamless knitted fabrics with good comprehensive performance and the use of environmentally friendly wormwood repellents not only conform to the current people's healthy and environmentally friendly life philosophy, but also promote the development of the functional seamless knitted fabric market.

Social implications

In addition, seamless knitted fabrics have a huge market prospect, and many of their fabrics are used for sports underwear and outdoor wear. Therefore, the research and development of functional knitted fabrics will attract consumers to buy. While improving the wearing comfort, it can increase profits for the company.

Originality/value

The mosquito-proof functional seamless knitted fabric developed in this research has a high mosquito-proof rate after 15 times and can be used as underwear fabric or outdoor sports fabric.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 23 August 2018

Zimin Jin, Lei Lei, Haitao Meng, Li Gao and Yuxiu Yan

The purpose of this paper is to measure the thermal and moisture resistance of the knitted upper fabrics with the foot model, which provided basis for designing and producing…

Abstract

Purpose

The purpose of this paper is to measure the thermal and moisture resistance of the knitted upper fabrics with the foot model, which provided basis for designing and producing sports shoes with thermal-moisture comfort.

Design/methodology/approach

In this paper, different yarn materials and fabric stitches were selected as the changing factors. The three kinds of yarn materials and the three kinds of fabric stitches were combined to design and weave eight pieces of knitted upper fabrics. Human sweating was simulated by the thermal-moisture comfort foot model, and then tested the thermal and moisture resistance of eight pieces of fabrics in different parts of the foot. Finally, the relationship between yarn material, fabric stitch, and the thermal and moisture resistance in different parts of the foot was analyzed by data.

Findings

The composition of the yarn material and fabric stitch has certain effect on the thermal-moisture comfort in different sections of the foot. When the yarn material of the four parts of the lateral arch, medial arch, ankle and heel is composed of 31.1tex moisture wicking polyester/33.3tex spandex coated yarn, the yarn material of the instep and toes is composed of 31.1tex ordinary polyester/33.3tex spandex coated yarn, and all parts of fabric stitch choose single-sided loop transfer stitch, the knitted sports shoes have the best thermal-moisture comfort.

Originality/value

The study used the thermal-moisture comfort foot model to simulate the human body metabolism and sweating system. Through the quantitative analyze of the thermal and moisture resistance of knitted upper fabrics to provide basis for the producers to design and product knitted sports shoes with good thermal-moisture comfort.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 March 2017

Yuxiu Yan, Yanna Feng, Zimin Jin and Jianwei Tao

The purpose of this paper is to improve the comfort and shaping function of seamless shapewear on the material and structure and develop new seamless shapewear products. The…

Abstract

Purpose

The purpose of this paper is to improve the comfort and shaping function of seamless shapewear on the material and structure and develop new seamless shapewear products. The shaping figure effect will be verified as well.

Design/methodology/approach

The performance of the knitted fabrics made of Polytrimethylene terephthalate (PTT) filament was analyzed by orthogonal experiment and fuzzy mathematical methods analysis, in order to get the optimal conditions for the best performance. The new products were designed and made based on the results of the material research with the consideration of the aesthetic requirements. The shaping effect of seamless shapewears on local and global figure was tested by the methods of the combination of subjective and objective evaluation.

Findings

The sample which renders the optimal performance for shapewear is the one with PTT filament as face yarn, nylon core-spun yarn as ground yarn and 3+1 simulate rib knit structure. The material of face yarn, mixed proportion and structure can influence the shape retention, appearance and comfort of PTT fabric in various degrees. Three shapewears which were developed according to the results of material research have different shaping effect. And women with different figures put different satisfaction degrees on each shapewear’s shaping effect.

Practical implications

This paper provides scientific basis and reference for enterprise to design good tight seamless shapewear as well as for consumer to buy suitable products.

Originality/value

In the view of the problems of present shapewears, this paper completed the development of the shapewears and verified the shaping effect of them on women with different figures. The shapewears can be put into production directly.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 August 2022

Yifei Mu, Zimin Jin, Yuxiu Yan and Jianwei Tao

In order to study whether far-infrared fabrics can be used as a garment for breast cancer patients, or as an adjuvant rehabilitation underwear for breast cancer patients after…

Abstract

Purpose

In order to study whether far-infrared fabrics can be used as a garment for breast cancer patients, or as an adjuvant rehabilitation underwear for breast cancer patients after postoperative radiotherapy and chemotherapy, to eliminate tissue edema. To explore the effect of different far-infrared fabrics on the proliferation and invasion of breast cancer cells as a basic in vitro study.

Design/methodology/approach

Six kinds of fabrics of the same specification with different far-infrared nanoparticles were selected. MCF7 and Bcap37 breast cancer cells were used to study the effect of far-infrared fabrics on cell proliferation and invasion. Six kinds of far-infrared fabrics were used to culture breast cancer cells and explore their effects on breast cancer cell growth and the difference between different far-infrared fabrics.

Findings

It is found that the far-infrared emissivity of six kinds of fabrics are different, among which tea carbon fabric is the highest, followed by volcanic fabric, graphene fabric and biomass graphene fabric are the lowest. The results show that the far-infrared fabrics can significantly inhibit the proliferation and invasion of breast cancer cells, the higher the far-infrared emissivity is, and the longer the time of far-infrared radiation, the more significant the inhibition effect is.

Originality/value

Far-infrared fabrics can inhibit proliferation and invasion of breast cancer cells in vitro. Therefore, far-infrared fabrics can be used for adjuvant rehabilitation of breast cancer patients. This conclusion provides a basis for the application of far-infrared functional fabrics in the medical field. This conclusion provides a basis for the application of far-infrared functional fabrics in medical field.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 October 2014

Yuxiu Yan, Jie Gao, Zimin Jin and Jianwei Tao

– The purpose of this paper is to clarify the relationship between dynamic clothing pressure of women's sports bras and heart rate variation indexes during playing basketball.

Abstract

Purpose

The purpose of this paper is to clarify the relationship between dynamic clothing pressure of women's sports bras and heart rate variation indexes during playing basketball.

Design/methodology/approach

Totally, 35 healthy females aged between 20 and 24 were employed as subjects. Their heart rate variability (HRV) data and the clothing pressure values when wearing sports bras of different bust sizes during playing basketball were measured using Polar RS800CX heart rate monitor and Flexi Force201 thin film type pressure sensor with MFF series pressure test system. Their subjective comfort evaluations were conducted by five-point Likert scale. Grey correlation analysis is used to determine the correlation degree of heart rate variation indexes and subjective comfort evaluations to identify the indexes preferably associated with subjective comfort. Multiple regression analysis is applied to investigate multiple correlations between pressure of test points and the indexes selected above.

Findings

Combined subjective comfort evaluation with objective HRV evaluation the heart rate variation indexes preferably associated with subjective comfort of these bras were identified, which includes mHR, mRR, RMSSD, pNN50. By the relationship between dynamic clothing pressure and the indexes above, this study finds that the clothing pressure of the chest area during basketball exercise should be controlled in the range of 2.01-4.74 kPa.

Research limitations/implications

The subjects of different body type should be taken into account. Further, the mathematic models from this study show low R2-value so the models should be provided more reliable prediction.

Originality/value

The present study indicates that there is an inevitable connection between heart rate variation indexes and subjective comfort of basketball sports bras and creatively points out that heart rate variation indexes can partly assess the comfortable clothing pressure. The study can offer theoretical basis for sports apparel industry to develop the comfortable basketball sports bra.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Content available
Article
Publication date: 10 December 2021

George K. Stylios

413

Abstract

Details

International Journal of Clothing Science and Technology, vol. 33 no. 6
Type: Research Article
ISSN: 0955-6222

Article
Publication date: 3 July 2023

Zimin Li, Zilong Zhu, Jianqiu Wang, Meng Wang, Ting Hou, Qinghua Li and Pei Yu

Two corrosion inhibitors for closed cooling water systems, nitrite-based and mixture of nitrite and molybdate corrosion inhibitor, are often compared to each other. This study…

73

Abstract

Purpose

Two corrosion inhibitors for closed cooling water systems, nitrite-based and mixture of nitrite and molybdate corrosion inhibitor, are often compared to each other. This study aims to optimize these two inhibitors in terms of concentration and pH for carbon steel protection, with insights into the double layer structure on surface and its impact on corrosion inhibition.

Design/methodology/approach

Electrochemical analysis including electrochemical impedance spectroscopy and potentiodynamic test are carried out for quick assessment of corrosion inhibition efficiency and optimization, which is confirmed by immersion test and microscopic analysis. The electronic properties of the surface film are analyzed through Mott–Schottky method which provides new insights into the inhibition mechanism and the role of each component in mixture inhibitor.

Findings

Mixture of nitrite and molybdate is shown to present higher inhibition efficiency, owning to the double layer structure. Nitrite alone can form a protective surface film, whereas molybdate leads to an n-type semiconductive film with lower donor density, hence giving rise to a better inhibition effect.

Research limitations/implications

Surface after inhibitor treatment has been carefully characterized to the microscopic scale, implying the effect of micro-structure, chemical composition and electronic properties on the corrosion resistance. Inorganic corrosion inhibitors can be tuned to provide higher efficiency by careful design of surface film structure and composition.

Originality/value

Almost every study on corrosion inhibitor applies such method for quick assessment of corrosion inhibition effect. Mott–Schottky test is one of electrochemical methods that reveals the electronic properties of the surface film. Previous works have studied the surface layer mainly through X-ray photoelectron spectroscopy. This study provides another insight into the surface film treated by nitrite and molybdate through Mott–Schottky analysis, and relates this structure to the corrosion inhibition effect based on multiple analysis including electrochemistry, microscopic characterization, thermodynamics and interface chemistry.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 7 of 7