Search results

1 – 10 of 18
Article
Publication date: 10 June 2021

Zhenyu Tang, Xiaoyan Tang, Shi Pu, Yimeng Zhang, Hang Zhang, Yuming Zhang and Song Bo

To use the 4H-SiC material in integrated circuits for high temperature application, an accurate and simple circuit model of n-channel planar 4H-SiC MOSFET is required.

Abstract

Purpose

To use the 4H-SiC material in integrated circuits for high temperature application, an accurate and simple circuit model of n-channel planar 4H-SiC MOSFET is required.

Design/methodology/approach

In this paper, a SPICE model of n-channel planar 4H-SiC MOSFET was built based on the device simulation results and measurement results. Firstly, a device model was simulated with Sentaurus TCAD, with measured parameters from fabricated planar 4H-SiC MOSFET previously. Then the device simulation results were analyzed and parameters for SPICE models were extracted. With these parameters, an accurate SPICE model was built and simulated.

Findings

The SPICE model exhibits the same performance as the measured results with different environment temperatures. The simulation results indicate that the maximum fitting error is 0.22 mA (7.33% approximately) at 200 °C. A common-source amplifier with this model is also simulated and the simulated gain is stable at different environment temperatures.

Originality/value

This paper provides a reliable modeling method for n-Channel Planar 4H-SiC MOSFET and reference value for the design of 4H-SiC high temperature integrated circuit.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 19 March 2024

Mingke Gao, Zhenyu Zhang, Jinyuan Zhang, Shihao Tang, Han Zhang and Tao Pang

Because of the various advantages of reinforcement learning (RL) mentioned above, this study uses RL to train unmanned aerial vehicles to perform two tasks: target search and…

Abstract

Purpose

Because of the various advantages of reinforcement learning (RL) mentioned above, this study uses RL to train unmanned aerial vehicles to perform two tasks: target search and cooperative obstacle avoidance.

Design/methodology/approach

This study draws inspiration from the recurrent state-space model and recurrent models (RPM) to propose a simpler yet highly effective model called the unmanned aerial vehicles prediction model (UAVPM). The main objective is to assist in training the UAV representation model with a recurrent neural network, using the soft actor-critic algorithm.

Findings

This study proposes a generalized actor-critic framework consisting of three modules: representation, policy and value. This architecture serves as the foundation for training UAVPM. This study proposes the UAVPM, which is designed to aid in training the recurrent representation using the transition model, reward recovery model and observation recovery model. Unlike traditional approaches reliant solely on reward signals, RPM incorporates temporal information. In addition, it allows the inclusion of extra knowledge or information from virtual training environments. This study designs UAV target search and UAV cooperative obstacle avoidance tasks. The algorithm outperforms baselines in these two environments.

Originality/value

It is important to note that UAVPM does not play a role in the inference phase. This means that the representation model and policy remain independent of UAVPM. Consequently, this study can introduce additional “cheating” information from virtual training environments to guide the UAV representation without concerns about its real-world existence. By leveraging historical information more effectively, this study enhances UAVs’ decision-making abilities, thus improving the performance of both tasks at hand.

Details

International Journal of Web Information Systems, vol. 20 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

Open Access
Article
Publication date: 12 September 2023

Zhiping Hou, Jun Wan, Zhenyu Wang and Changgui Li

In confronting the challenge of climate change and progressing towards dual carbon goals, China is actively implementing low-carbon city pilot policy. This paper aims to focus on…

Abstract

Purpose

In confronting the challenge of climate change and progressing towards dual carbon goals, China is actively implementing low-carbon city pilot policy. This paper aims to focus on the potential impact of this policy on enterprise green governance, aiming to promote the reduction and balance of carbon emissions.

Design/methodology/approach

Based on the panel data of China's large-scale industrial enterprises from 2007 to 2013, this paper uses the Difference-in-differences (DID) method to study the impact and path mechanism of the implementation of low-carbon city pilot policy on enterprise green governance. Heterogeneity analysis is used to compare the effects of low-carbon city pilot policy in different regions, different enterprises and different industries.

Findings

The low-carbon pilot can indeed effectively enhance corporate green governance, a conclusion that still holds after a series of robustness tests. The low-carbon city pilot policy mainly enhances enterprise green governance through two paths: an industrial structure upgrade and enterprise energy consumption, and it improves green governance by reducing enterprise energy consumption through industrial structure upgrade. The impact of low-carbon city pilot policy on enterprise green governance shows significant differences across different regions, different enterprises and different industries.

Research limitations/implications

This paper examines the impact of low-carbon city pilot policy on enterprise green governance. However, due to availability of data, there are still some limitations to be further tackled. The parallel trend test in this paper shows that the pilot policy has a significant positive effect on the green governance of enterprises. However, due to serious lack of data in some years, the authors only selected the enterprise data of a shorter period as our experimental data, which leads the results to still have certain deficiencies. For the verification of the impact mechanism, the conclusions obtained in this paper are relatively limited. Although all the mechanism tests are passed, the reliability of the results still needs to be further tested through future data samples. In addition, as the pilot policy of low-carbon cities is still in progress, the policy can be tracked and analysed in the future as more data are disclosed, and further research can be carried out through dimensional expansion.

Practical implications

Low-carbon city pilot policy plays an important role in inducing the green governance of enterprises. Therefore, policy makers can continue to strengthen the construction of low-carbon city pilots by refining pilot experience, building typical cases, actively promoting pilot policy experience, expanding pilot scope and enhancing the implementation efficiency of pilot policy nationwide, which will contribute to the optimization and upgrading of the regional industrial structure at the urban level and will provide experience and reference for the synergistic implementation plan of pollution reduction and carbon reduction.

Social implications

The impact of the low-carbon city pilot policy on enterprise green governance not only exists in two separate paths of urban industrial upgrading and enterprise energy consumption but also exists in a chain transmission path from macro to micro. The authors find that the effect value of each influence path is different, and there is an obvious leading influence path for the role of enterprise green governance. Therefore, in the process of implementing a low-carbon city pilot policy, policies should be designed specifically for different mechanisms. Moreover, complementing and coordinating several paths should be advocated to give full play to the green governance effect of enterprises brought by different paths and to further expand the scope of industries and enterprises where policies play a role.

Originality/value

To the best of the authors’ knowledge, for the first time, this paper connects macro mechanisms with micro mechanisms, discovering a macro-to-micro transmission mechanism in the process of low-carbon city pilot policy affecting enterprise green governance. That is, the low-carbon city pilot policy can facilitate industrial structure upgrading, resulting in reduced enterprise energy consumption, ultimately enhancing enterprise green governance.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 2 May 2022

Ao Li, Dingli Zhang, Zhenyu Sun, Jun Huang and Fei Dong

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to…

Abstract

Purpose

The microseismic monitoring technique has great advantages on identifying the location, extent and the mechanism of damage process occurring in rock mass. This study aims to analyze distribution characteristics and the evolution law of excavation damage zone of surrounding rock based on microseismic monitoring data.

Design/methodology/approach

In situ test using microseismic monitoring technique is carried out in the large-span transition tunnel of Badaling Great Wall Station of Beijing-Zhangjiakou high-speed railway. An intelligent microseismic monitoring system is built with symmetry monitoring point layout both on the mountain surface and inside the tunnel to achieve three-dimensional and all-round monitoring results.

Findings

Microseismic events can be divided into high density area, medium density area and low density area according to the density distribution of microseismic events. The positions where the cumulative distribution frequencies of microseismic events are 60 and 80% are identified as the boundaries between high and medium density areas and between medium and low density areas, respectively. The high density area of microseismic events is regarded as the high excavation damage zone of surrounding rock, which is affected by the grade of surrounding rock and the span of tunnel. The prediction formulas for the depth of high excavation damage zone of surrounding rock at different tunnel positions are given considering these two parameters. The scale of the average moment magnitude parameters of microseismic events is adopted to describe the damage degree of surrounding rock. The strong positive correlation and multistage characteristics between the depth of excavation damage zone and deformation of surrounding rock are revealed. Based on the depth of high excavation damage zone of surrounding rock, the prestressed anchor cable (rod) is designed, and the safety of anchor cable (rod) design parameters is verified by the deformation results of surrounding rock.

Originality/value

The research provides a new method to predict the surrounding rock damage zone of large-span tunnel and also provides a reference basis for design parameters of prestressed anchor cable (rod).

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 5 November 2019

Yilin Zhang, Zhenyu Cheng and Qingsong He

For the developing countries involving in the Belt and Road Initiative (BRI) with China as the main source of foreign development investment (FDI) and development as the top…

Abstract

Purpose

For the developing countries involving in the Belt and Road Initiative (BRI) with China as the main source of foreign development investment (FDI) and development as the top priority, it appears to attract more and more attention on how to make the best use of China’s outward foreign development investment. However, the contradictory evidence in the previous studies of FDI spillover effect and the remarkable time-lag feature of spillovers motivate us to analyze the mechanism of FDI spillover effect. The paper aims to discuss this issue.

Design/methodology/approach

The mechanism of FDI spillovers and the unavoidable lag effect in this process are empirically analyzed. Based on the panel data from the Belt and Road developing countries (BRDCs) and China’s direct investments (CDIs) from 2003 to 2017, the authors establish a panel vector autoregressive model, employing impulse response function and variance decomposition analysis, together with Granger causality test.

Findings

Results suggest a dynamic interactive causality mechanism. First, CDI promotes the economic growth of BRDCs through technical efficiency, human capital and institutional transition with combined lags of five, nine and eight years. Second, improvements in the technical efficiency and institutional quality promote economic growth by facilitating the human capital with integrated delays of six and eight years. Third, China’s investment directly affects the economic growth of BRDCs, with a time lag of six years. The average time lag is about eight years.

Originality/value

Based on the analysis on the mechanism and time lag of FDI spillovers, the authors have shown that many previous articles using one-year lagged FDI to examine the spillover effect have systematic biases, which contributes to the research on the FDI spillover mechanism. It provides new views for host countries on how to make more effective use of FDI, especially for BRDCs using CDIs.

Details

International Journal of Emerging Markets, vol. 15 no. 4
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 1 November 2019

Gaoyuan Qin, Fengming Tao, Lixia Li and Zhenyu Chen

In order to reduce logistics transportation costs and respond to low-carbon economy, the purpose of this paper is to study the more practical and common simultaneous pickup and…

Abstract

Purpose

In order to reduce logistics transportation costs and respond to low-carbon economy, the purpose of this paper is to study the more practical and common simultaneous pickup and delivery vehicle routing problem, which considers the carbon tax policy. A low-carbon simultaneous pickup and delivery vehicle routing problem model is constructed with the minimum total costs as the objective function.

Design/methodology/approach

This study develops a mathematical optimization model with the minimum total costs, including the carbon emissions costs as the objective function. An adaptive genetic hill-climbing algorithm is designed to solve the model.

Findings

First, the effectiveness of the algorithm is verified by numerical experiments. Second, the research results prove that carbon tax mechanism can effectively reduce carbon emissions within effective carbon tax interval. Finally, the research results also show that, under the carbon tax mechanism, the effect of vehicle speed on total costs will become more obvious with the increase of carbon tax.

Research limitations/implications

This paper only considers the weight of the cargo, but it does not consider the volume of the cargo.

Originality/value

Few studies focus on environmental issues in the simultaneous pickup and delivery problem. Thus, this paper constructs a green path optimization model, combining the carbon tax mechanism for the problem. This paper further analyzes the impact of carbon tax value on total costs and carbon emission; at the same time, the effect of vehicle speed on total cost is also analyzed.

Article
Publication date: 19 March 2021

Zhenyu Lu and Ning Wang

Dynamic movement primitives (DMPs) is a general robotic skill learning from demonstration method, but it is usually used for single robotic manipulation. For cloud-based robotic…

Abstract

Purpose

Dynamic movement primitives (DMPs) is a general robotic skill learning from demonstration method, but it is usually used for single robotic manipulation. For cloud-based robotic skill learning, the authors consider trajectories/skills changed by the environment, rebuild the DMPs model and propose a new DMPs-based skill learning framework removing the influence of the changing environment.

Design/methodology/approach

The authors proposed methods for two obstacle avoidance scenes: point obstacle and non-point obstacle. For the case with point obstacles, an accelerating term is added to the original DMPs function. The unknown parameters in this term are estimated by interactive identification and fitting step of the forcing function. Then a pure skill despising the influence of obstacles is achieved. Using identified parameters, the skill can be applied to new tasks with obstacles. For the non-point obstacle case, a space matching method is proposed by building a matching function from the universal space without obstacle to the space condensed by obstacles. Then the original trajectory will change along with transformation of the space to get a general trajectory for the new environment.

Findings

The proposed two methods are certified by two experiments, one of which is taken based on Omni joystick to record operator’s manipulation motions. Results show that the learned skills allow robots to execute tasks such as autonomous assembling in a new environment.

Originality/value

This is a new innovation for DMPs-based cloud robotic skill learning from multi-scene tasks and generalizing new skills following the changes of the environment.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 2016

Zhenyu Wu, Guang Hu, Lin Feng, Jiping Wu and Shenglan Liu

This paper aims to investigate the collision avoidance problem for a mobile robot by constructing an artificial potential field (APF) based on geometrically modelling the…

Abstract

Purpose

This paper aims to investigate the collision avoidance problem for a mobile robot by constructing an artificial potential field (APF) based on geometrically modelling the obstacles with a new method named the obstacle envelope modelling (OEM).

Design/methodology/approach

The obstacles of arbitrary shapes are enveloped in OEM using the primitive, which is an ellipse in a two-dimensional plane or an ellipsoid in a three-dimensional space. As the surface details of obstacles are neglected elegantly in OEM, the workspace of a mobile robot is made simpler so as to increase the capability of APF in a clustered environment.

Findings

Further, a dipole is applied to the construction of APF produced by each obstacle, among which the positive pole pushes the robot away and the negative pole pulls the robot close.

Originality/value

As a whole, the dipole leads the robot to make a derivation around the obstacle smoothly, which greatly reduces the local minima and trajectory oscillations. Computer simulations are conducted to demonstrate the effectiveness of the proposed approach.

Details

Assembly Automation, vol. 36 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 18