Search results

1 – 1 of 1
Article
Publication date: 10 June 2021

Zhenyu Tang, Xiaoyan Tang, Shi Pu, Yimeng Zhang, Hang Zhang, Yuming Zhang and Song Bo

To use the 4H-SiC material in integrated circuits for high temperature application, an accurate and simple circuit model of n-channel planar 4H-SiC MOSFET is required.

Abstract

Purpose

To use the 4H-SiC material in integrated circuits for high temperature application, an accurate and simple circuit model of n-channel planar 4H-SiC MOSFET is required.

Design/methodology/approach

In this paper, a SPICE model of n-channel planar 4H-SiC MOSFET was built based on the device simulation results and measurement results. Firstly, a device model was simulated with Sentaurus TCAD, with measured parameters from fabricated planar 4H-SiC MOSFET previously. Then the device simulation results were analyzed and parameters for SPICE models were extracted. With these parameters, an accurate SPICE model was built and simulated.

Findings

The SPICE model exhibits the same performance as the measured results with different environment temperatures. The simulation results indicate that the maximum fitting error is 0.22 mA (7.33% approximately) at 200 °C. A common-source amplifier with this model is also simulated and the simulated gain is stable at different environment temperatures.

Originality/value

This paper provides a reliable modeling method for n-Channel Planar 4H-SiC MOSFET and reference value for the design of 4H-SiC high temperature integrated circuit.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 1 of 1