Search results

11 – 20 of 117
Article
Publication date: 23 August 2013

Yang Liu and Jiang Wei

Business model innovation is a new way for Chinese firms to compete in the global economy. Due to the unique context in China, the authors aim to clarify what is a business model…

1721

Abstract

Purpose

Business model innovation is a new way for Chinese firms to compete in the global economy. Due to the unique context in China, the authors aim to clarify what is a business model, how to design a business model, and how different designs affect firms' competitive advantages in China.

Design/methodology/approach

Literature review and multiple case studies (i.e. Dinghan Technology, Flush Network, Aier Eye, and Huayi Brothers) are used.

Findings

After defining business model, the authors integrate the activity system approach and the configurational approach to construct a unique framework for business model design, and four different models for Chinese firms emerge, namely, focused cost innovation, integrated cost innovation, focused value innovation, and integrated value innovation. Then the authors explore the main mechanisms through which different designs could help firms achieve competitive advantages.

Practical implications

Business model matters for Chinese firms. The authors' results provide a roadmap for Chinese entrepreneurs to design effective and efficient business models. Future success of Chinese new firms depends on the continuous improvement of their business model.

Originality/value

The authors' results contribute to a better understanding of business model, particularly in the context of China. The authors also contribute to the entrepreneurship literature by providing insights of how to configure entrepreneurial activity system to gain competitive advantages.

Details

Chinese Management Studies, vol. 7 no. 3
Type: Research Article
ISSN: 1750-614X

Keywords

Article
Publication date: 2 March 2023

Xiaojun Wu, Bo Liu, Peng Li and Yunhui Liu

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the…

Abstract

Purpose

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the results when several three-dimensional (3D) scanners are involved. Thus, this study aims to provide a unified step for different laser-line length calibration requirements for laser profile measurement (LPM) systems.

Design/methodology/approach

3D LPM is the process of converting physical objects into 3D digital models, wherein camera laser-plane calibration is critical for ensuring system precision. However, conventional calibration methods for 3D LPM typically use a calibration target to calibrate the system for a single laser-line length, which needs multiple calibration patterns and makes the procedure complicated. In this paper, a unified calibration method was proposed to automatically calibrate the camera laser-plane parameters for the LPM systems with different laser-line lengths. The authors designed an elaborate planar calibration target with different-sized rings that mounted on a motorized linear platform to calculate the laser-plane parameters of the LPM systems. Then, the camera coordinates of the control points are obtained using the intersection line between the laser line and the planar target. With a new proposed error correction model, the errors caused by hardware assembly can be corrected. To validate the proposed method, three LPM devices with different laser-line lengths are used to verify the proposed system. Experimental results show that the proposed method can calibrate the LPM systems with different laser-line lengths conveniently with standard steps.

Findings

The repeatability and accuracy of the proposed calibration prototypes were evaluated with high-precision workpieces. The experiments have shown that the proposed method is highly adaptive and can automatically calibrate the LPM system with different laser-line lengths with high accuracy.

Research limitations/implications

In the repeatability experiments, there were errors in the measured heights of the test workpieces, and this is because the laser emitter had the best working distance and laser-line length.

Practical implications

By using this proposed method and device, the calibration of the 3D scanning laser device can be done in an automatic way.

Social implications

The calibration efficiency of a laser camera device is increased.

Originality/value

The authors proposed a unified calibration method for LPM systems with different laser-line lengths that consist of a motorized linear joint and a calibration target with elaborately designed ring patterns; the authors realized the automatic parameter calibration.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 August 2021

Zhiguang Cheng, Behzad Forghani, Zhenbin Du, Lanrong Liu, Yongjian Li, Xiaojun Zhao, Tao Liu, Linfeng Cai, Weiming Zhang, Meilin Lu, Yakun Tian and Yating Li

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside…

136

Abstract

Purpose

This paper aims to propose and establish a set of new benchmark models to investigate and confidently validate the modeling and prediction of total stray-field loss inside magnetic and non-magnetic components under harmonics-direct current (HDC) hybrid excitations. As a new member-set (P21e) of the testing electromagnetic analysis methods Problem 21 Family, the focus is on efficient analysis methods and accurate material property modeling under complex excitations.

Design/methodology/approach

This P21e-based benchmarking covers the design of new benchmark models with magnetic flux compensation, the establishment of a new benchmark measurement system with HDC hybrid excitation, the formulation of the testing program (such as defined Cases I–V) and the measurement and prediction of material properties under HDC hybrid excitations, to test electromagnetic analysis methods and finite element (FE) computation models and investigate the electromagnetic behavior of typical magnetic and electromagnetic shields in electrical equipment.

Findings

The updated Problem 21 Family (V.2021) can now be used to investigate and validate the total power loss and the different shielding performance of magnetic and electromagnetic shields under various HDC hybrid excitations, including the different spatial distributions of the same excitation parameters. The new member-set (P21e) with magnetic flux compensation can experimentally determine the total power loss inside the load-component, which helps to validate the numerical modeling and simulation with confidence. The additional iron loss inside the laminated sheets caused by the magnetic flux normal to the laminations must be correctly modeled and predicted during the design and analysis. It is also observed that the magnetic properties (B27R090) measured in the rolling and transverse directions with different direct current (DC) biasing magnetic field are quite different from each other.

Research limitations/implications

The future benchmarking target is to study the effects of stronger HDC hybrid excitations on the internal loss behavior and the microstructure of magnetic load components.

Originality/value

This paper proposes a new extension of Problem 21 Family (1993–2021) with the upgraded excitation, involving multi-harmonics and DC bias. The alternating current (AC) and DC excitation can be applied at the two sides of the model’s load-component to avoid the adverse impact on the AC and DC power supply and investigate the effect of different AC and DC hybrid patterns on the total loss inside the load-component. The overall effectiveness of numerical modeling and simulation is highlighted and achieved via combining the efficient electromagnetic analysis methods and solvers, the reliable material property modeling and prediction under complex excitations and the precise FE computation model using partition processing. The outcome of this project will be beneficial to large-scale and high-performance numerical modeling.

Article
Publication date: 14 November 2022

Yuejian Zhou, Xiaoshan Liu, Guoqiu He, Zhiqiang Zhou, Yiping Liao, Yinfu Liu and Xiaojun Xu

This paper aims to investigate the effect of Cu content and T6 heat treatment on the mechanical properties and the tribological performance of SiCp/Al-Si-Cu-Ni-Mg hybrid…

Abstract

Purpose

This paper aims to investigate the effect of Cu content and T6 heat treatment on the mechanical properties and the tribological performance of SiCp/Al-Si-Cu-Ni-Mg hybrid composites at an elevated temperature.

Design/methodology/approach

The stir casting method was used to synthesize SiCp/Al-12Si-xCu-1Ni-1Mg (x = 2, 3, 3.5, 4, 4.5, 5 Wt.%) composites containing 20 vol% SiC. The hardness and tensile strength of the aluminum matrix composites (AMCs) at room temperature and elevated temperature were studied, and the wear mechanism was investigated using scanning electron microscopic and energy dispersive spectroscopy.

Findings

Results indicate that the hardness and tensile strength of the AMCs are affected significantly by T6 heat treatment and Cu content. The high-temperature friction and wear mechanism of AMCs is the composite wear mechanism of oxidation wear, adhesion wear, abrasive wear, peeling wear, high-temperature softening and partial melting. Among them, adhesion wear, high-temperature matrix softening and local melting are the main wear mechanisms.

Originality/value

The influence mechanism of Cu content on the hardness, tensile strength and high temperature resistance of AMCs was explained by microstructure. And the results further help to explore the application of AMCs in high temperature.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 September 2022

Ziming Liu, Rui Hu and Xiaojun Bi

The prevalence of digital reading and the widespread use of social media among young people demands systematic exploration of the effects of social media addiction on students'…

1655

Abstract

Purpose

The prevalence of digital reading and the widespread use of social media among young people demands systematic exploration of the effects of social media addiction on students' reading practice. This paper aims to explore the effects of social media addiction on reading preferences, in-depth reading and sustained attention.

Design/methodology/approach

Survey and analysis methods are employed.

Findings

For many, social media provides an ideal platform of connection and expression; however, prolonged social media use holds the danger of becoming a behavioral addiction that threatens to undermine one's reading practice. Social media use tends to have a more significant impact on leisure reading than on academic reading. Obsessive engagement with social media hurts reading concentration and in-depth reading. While a majority (70.4%) of those surveyed believed that chronic social media use carries more harm than good on their learning, only half (50.1%) agreed or strongly agreed that today's students are too indulged in social media and need forceful control of it.

Originality/value

Implications of the effects of social media on reading practice are discussed, and directions for future research are suggested. It is likely that social media will continue to be seductive, attracting new generations of young people. Future research should explore prevention strategies.

Details

Journal of Documentation, vol. 79 no. 3
Type: Research Article
ISSN: 0022-0418

Keywords

Article
Publication date: 13 September 2022

Yinfu Liu, Guoqiu He, Xiaoshan Liu, Jiaqi Pan, Zhiqiang Zhou, Yiping Liao, Qiao He and Xiaojun Xu

To improve the high-temperature wear properties of the SiCp/A359 composite, foamed iron-reinforced SiCp/A359 composite (A359–SiCp/Fe) is prepared. The purpose of this study is to…

Abstract

Purpose

To improve the high-temperature wear properties of the SiCp/A359 composite, foamed iron-reinforced SiCp/A359 composite (A359–SiCp/Fe) is prepared. The purpose of this study is to investigate the tribological behavior and mechanism of the A359–SiCp/Fe composites at different temperatures (100–500 °C) and loads (7 N, 10 N and 12 N).

Design/methodology/approach

The A359–SiCp/Fe composite was fabricated by vacuum-assisted infiltration. The dry sliding tribological behaviors of A359–SiCp/Fe composite were investigated using the ball-on-disc-type tribometer. The worn surface and wear morphology of the longitudinal section were examined using field emission scanning electron microscopy and metallographic microscope.

Findings

The critical transition temperature for severe wear in A359–SiCp/Fe composite was 50–100 °C higher than in SiCp/A359 composite. Foamed iron prevents exfoliation cracks from penetrating deeper into the matrix. The friction coefficient stability of the A359–SiCp/Fe composite was higher than the unreinforced composite at elevated temperatures. With the increase in temperature, the friction-affected layer was severely worn, and the wear mechanism transferred from abrasion and delamination to oxidation and plastic flow, respectively.

Originality/value

The preparation procedure for aluminum matrix composites reinforced with foamed metal has been less reported, and the research on the tribological behavior and mechanism of A359–SiCp/Fe composite at various temperatures is insufficient. The foamed iron structure considerably enhances the wear properties of SiCp/A359 composite in elevated temperature conditions.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 March 2022

Haining Guan, Chunmei Feng, Xiaojun Xu, Weiting Sun, Jianchun Han, Dengyong Liu and Xiaoqin Diao

This study aims to investigate the influence of soy protein isolate hydrolysates (SPIH) obtained using 4 h hydrolysis under 200 MPa on proximate composition, cooking loss…

Abstract

Purpose

This study aims to investigate the influence of soy protein isolate hydrolysates (SPIH) obtained using 4 h hydrolysis under 200 MPa on proximate composition, cooking loss, textural properties, color, water distribution, microstructure, thiobarbituric acid reactive substance (TBARS) value and carbonyl and sulfhydryl contents of emulsion sausages.

Design/methodology/approach

Sausages with SPIHs at four concentrations (0, 1.0, 2.0 and 3.0%) were prepared, and the sausage with 0.01% butylated hydroxyanisole (BHA) was used as a positive control. Some sausages were selected for the analyses of quality characteristics and microcosmic properties. Other sausages were stored under 4 °C for 0, 7, 14, 21 and 28 days to investigate the oxidative stability.

Findings

The addition of SPIHs at various levels (0–3.0%) or 0.01% BHA did not affect the proximate composition (protein, fat and ash) of emulsion sausages. The addition of 2.0% SPIH decreased cooking loss and increased moisture content, hardness, springiness, chewiness, resilience and L* value, compared to the sausages without SPIH and with 0.01% BHA (p < 0.05). Furthermore, low-field nuclear magnetic resonance results suggested that sausages with 2.0% SPIH had the shortest T2 relaxation time. In addition, 2.0% SPIH and 0.01% BHA could inhibit the oxidation of emulsion sausages when compared with the sample without SPIH (p < 0.05). Moreover, there were no differences between sausages with 2.0% SPIH and 0.01% BHA (p > 0.05).

Originality/value

These findings confirmed that the 2.0% SPIH obtained under 200 MPa can be used as a natural additive to improve quality properties and antioxidant potential of emulsion sausages during storage.

Details

British Food Journal, vol. 124 no. 12
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 6 November 2017

Xiaojun Zhao, Fanhui Meng, Zhiguang Cheng, Lanrong Liu, Junjie Zhang and Chao Fan

This paper aims to investigate an efficient approach to model the electromagnetic behaviors and predict stray-field loss inside the magnetic steel plate under 3D harmonic…

Abstract

Purpose

This paper aims to investigate an efficient approach to model the electromagnetic behaviors and predict stray-field loss inside the magnetic steel plate under 3D harmonic magnetization conditions so as to effectively prevent the structural components from local overheating and insulation damage in electromagnetic devices.

Design/methodology/approach

An experimental setup is applied to measure all the magnetic properties of magnetic steel plate under harmonic excitations with different frequencies and phase angles. The measurement and numerical simulation are carried out based on the updated TEAM Problem 21 Model B+ (P210-B+), under the 3D harmonic magnetization conditions. An improved method to evaluate the stray-field loss is proposed, and harmonic flux distribution in the structural components is analyzed.

Findings

The influence of the harmonic order and phase angle on the stray-field loss in magnetic steel components are noteworthy. Based on the engineering-oriented benchmark models, the variations of stray-field losses and magnetic field distribution inside the magnetic components under harmonic magnetization conditions are presented and analyzed in detail.

Research limitations/implications

The capacity of the multi-function harmonic source, used in this work, was not large enough, which limits the magnetization level. Up to now, further improvements to increase the harmonic source capacity and investigations of the electromagnetic behaviors of magnetic steel components under multi-harmonic and DC-AC hybrid excitations are in progress.

Originality/value

To accurately predict the stray-field loss in magnetic steel plate, the improved method based on the combination of magnetic measurement and numerical simulation is proposed. The effects of the frequency and phase angle on the stray-field loss are analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 February 2022

Xiaojun Wu, Peng Li, Jinghui Zhou and Yunhui Liu

Scattered parts are laid randomly during the manufacturing process and have difficulty to recognize and manipulate. This study aims to complete the grasp of the scattered parts by…

Abstract

Purpose

Scattered parts are laid randomly during the manufacturing process and have difficulty to recognize and manipulate. This study aims to complete the grasp of the scattered parts by a manipulator with a camera and learning method.

Design/methodology/approach

In this paper, a cascaded convolutional neural network (CNN) method for robotic grasping based on monocular vision and small data set of scattered parts is proposed. This method can be divided into three steps: object detection, monocular depth estimation and keypoint estimation. In the first stage, an object detection network is improved to effectively locate the candidate parts. Then, it contains a neural network structure and corresponding training method to learn and reason high-resolution input images to obtain depth estimation. The keypoint estimation in the third step is expressed as a cumulative form of multi-scale prediction from a network to use an red green blue depth (RGBD) map that is acquired from the object detection and depth map estimation. Finally, a grasping strategy is studied to achieve successful and continuous grasping. In the experiments, different workpieces are used to validate the proposed method. The best grasping success rate is more than 80%.

Findings

By using the CNN-based method to extract the key points of the scattered parts and calculating the possibility of grasp, the successful rate is increased.

Practical implications

This method and robotic systems can be used in picking and placing of most industrial automatic manufacturing or assembly processes.

Originality/value

Unlike standard parts, scattered parts are randomly laid and have difficulty recognizing and grasping for the robot. This study uses a cascaded CNN network to extract the keypoints of the scattered parts, which are also labeled with the possibility of successful grasping. Experiments are conducted to demonstrate the grasping of those scattered parts.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 September 2019

Xiaojun Lin, Ming Liu, Simon So and Desmond Yuen

The purpose of this study is to investigate whether corporate social responsibility (CSR) can lower tax risk. Previous studies have demonstrated a negative link between CSR and…

2372

Abstract

Purpose

The purpose of this study is to investigate whether corporate social responsibility (CSR) can lower tax risk. Previous studies have demonstrated a negative link between CSR and tax aggressiveness. Generally, corporations engaging in social irresponsibility tend to undertake aggressive tax planning; whereas socially responsible firms enjoy tax savings. Because several recent studies have suggested that lower tax payments do not necessarily create higher tax risk, an exploration of the relationship between CSR and tax risk was not only interesting but also important.

Design/methodology/approach

Using an ethical perspective of CSR, this paper argues that executives who are nourished by an ethical climate tend to make responsible and reliable operating decisions. Therefore, their corporations would have better control of tax administration, and the corresponding tax risk would be constrained. Such corporations would enjoy greater tax savings while keeping their tax risk at relatively low levels. However, this reasoning ignores the fact that limited economic resources would constrain a firm from practicing CSR in the form of donations. This situation would also influence its attitude toward tax strategies. Specifically, when a firm’s performance is unsatisfactory, the cultural effect of CSR may diminish or even disappear.

Findings

Firms donating additional resources to CSR activities can construct a more ethical work climate that encourages executives to control tax risk while lowering tax expenses. For firms with unsatisfactory performance, the ethical benefits of CSR could disappear, thus suggesting a relationship with firm performance. This finding contributes to the knowledge on the ethical implications of CSR and proposes that the culture argument is conditional on satisfactory firm performance.

Originality/value

This study explores the association between corporate culture (CSR) and tax risk. The empirical results help shareholders, analysts and other investors to make their business decision better because CSR or corporate culture is less likely to change suddenly or dramatically in an abbreviated time. The finding of this study shed light on the importance of corporate culture on making an investment evaluation or decision. In addition, this study extends the research on CSR by demonstrating that the effects of CSR are conditioned on firm performance. The beneficial effect of CSR on tax risk would disappear when firms have unfavorable financial performance.

Details

Managerial Auditing Journal, vol. 34 no. 9
Type: Research Article
ISSN: 0268-6902

Keywords

11 – 20 of 117