Search results

1 – 10 of 471
Article
Publication date: 29 November 2023

Tarun Jaiswal, Manju Pandey and Priyanka Tripathi

The purpose of this study is to investigate and demonstrate the advancements achieved in the field of chest X-ray image captioning through the utilization of dynamic convolutional…

Abstract

Purpose

The purpose of this study is to investigate and demonstrate the advancements achieved in the field of chest X-ray image captioning through the utilization of dynamic convolutional encoder–decoder networks (DyCNN). Typical convolutional neural networks (CNNs) are unable to capture both local and global contextual information effectively and apply a uniform operation to all pixels in an image. To address this, we propose an innovative approach that integrates a dynamic convolution operation at the encoder stage, improving image encoding quality and disease detection. In addition, a decoder based on the gated recurrent unit (GRU) is used for language modeling, and an attention network is incorporated to enhance consistency. This novel combination allows for improved feature extraction, mimicking the expertise of radiologists by selectively focusing on important areas and producing coherent captions with valuable clinical information.

Design/methodology/approach

In this study, we have presented a new report generation approach that utilizes dynamic convolution applied Resnet-101 (DyCNN) as an encoder (Verelst and Tuytelaars, 2019) and GRU as a decoder (Dey and Salemt, 2017; Pan et al., 2020), along with an attention network (see Figure 1). This integration innovatively extends the capabilities of image encoding and sequential caption generation, representing a shift from conventional CNN architectures. With its ability to dynamically adapt receptive fields, the DyCNN excels at capturing features of varying scales within the CXR images. This dynamic adaptability significantly enhances the granularity of feature extraction, enabling precise representation of localized abnormalities and structural intricacies. By incorporating this flexibility into the encoding process, our model can distil meaningful and contextually rich features from the radiographic data. While the attention mechanism enables the model to selectively focus on different regions of the image during caption generation. The attention mechanism enhances the report generation process by allowing the model to assign different importance weights to different regions of the image, mimicking human perception. In parallel, the GRU-based decoder adds a critical dimension to the process by ensuring a smooth, sequential generation of captions.

Findings

The findings of this study highlight the significant advancements achieved in chest X-ray image captioning through the utilization of dynamic convolutional encoder–decoder networks (DyCNN). Experiments conducted using the IU-Chest X-ray datasets showed that the proposed model outperformed other state-of-the-art approaches. The model achieved notable scores, including a BLEU_1 score of 0.591, a BLEU_2 score of 0.347, a BLEU_3 score of 0.277 and a BLEU_4 score of 0.155. These results highlight the efficiency and efficacy of the model in producing precise radiology reports, enhancing image interpretation and clinical decision-making.

Originality/value

This work is the first of its kind, which employs DyCNN as an encoder to extract features from CXR images. In addition, GRU as the decoder for language modeling was utilized and the attention mechanisms into the model architecture were incorporated.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 22 March 2023

Ryuichi Kobayashi and Ming Yang

Orange peel formation remains to be understood clearly because it is difficult to directly observe a laser-sintered process in a partcake. Therefore, this study aims to provide…

Abstract

Purpose

Orange peel formation remains to be understood clearly because it is difficult to directly observe a laser-sintered process in a partcake. Therefore, this study aims to provide insight into the orange peel formation mechanism through the nondestructive observation of laser-sintered specimens and their surrounding powders.

Design/methodology/approach

This study observed polyamide 12 powder in the vicinity of a laser-sintered specimen via X-ray computed tomography (CT) scanning. The specimen for nondestructive observation was 3D modeled in a hollow box using 3D CAD software. The boxes built using a laser-sintering system contained unsintered surrounding powder and sintered specimens. The box contents were preserved even after the boxes were removed from the partcake. After X-ray CT scanning, the authors broke the boxes and evaluated the unevenness formed on the specimen surface (i.e. the orange peel evaluation).

Findings

Voids (not those in sintered parts) generated in the powder in the vicinity of the specimen triggered the orange peel formation. Voids were less likely to form in the build with a 178.5° powder bed than in the build with a 173.5° powder bed. Similarly, the increment in laser energy density effectively suppressed void formation, although there was a tradeoff with overmelting. Thin-walled parts avoided void growth and made the orange peel less noticeable.

Originality/value

To the best of the authors’ knowledge, this study is the first to observe and understand the relationship between voids generated in the powder in the vicinity of sintered parts and orange peel formation.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 October 2023

Muhammad Adnan Hasnain, Hassaan Malik, Muhammad Mujtaba Asad and Fahad Sherwani

The purpose of the study is to classify the radiographic images into three categories such as fillings, cavity and implant to identify dental diseases because dental disease is a…

Abstract

Purpose

The purpose of the study is to classify the radiographic images into three categories such as fillings, cavity and implant to identify dental diseases because dental disease is a very common dental health problem for all people. The detection of dental issues and the selection of the most suitable method of treatment are both determined by the results of a radiological examination. Dental x-rays provide important information about the insides of teeth and their surrounding cells, which helps dentists detect dental issues that are not immediately visible. The analysis of dental x-rays, which is typically done by dentists, is a time-consuming process that can become an error-prone technique due to the wide variations in the structure of teeth and the dentist's lack of expertise. The workload of a dental professional and the chance of misinterpretation can be decreased by the availability of such a system, which can interpret the result of an x-ray automatically.

Design/methodology/approach

This study uses deep learning (DL) models to identify dental diseases in order to tackle this issue. Four different DL models, such as ResNet-101, Xception, DenseNet-201 and EfficientNet-B0, were evaluated in order to determine which one would be the most useful for the detection of dental diseases (such as fillings, cavity and implant).

Findings

Loss and accuracy curves have been used to analyze the model. However, the EfficientNet-B0 model performed better compared to Xception, DenseNet-201 and ResNet-101. The accuracy, recall, F1-score and AUC values for this model were 98.91, 98.91, 98.74 and 99.98%, respectively. The accuracy rates for the Xception, ResNet-101 and DenseNet-201 are 96.74, 93.48 and 95.65%, respectively.

Practical implications

The present study can benefit dentists from using the DL model to more accurately diagnose dental problems.

Originality/value

This study is conducted to evaluate dental diseases using Convolutional neural network (CNN) techniques to assist dentists in selecting the most effective technique for a particular clinical condition.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 December 2023

Xiaolong Lu, Xudong Sui, Xiao Zhang, Zhen Yan and Junying Hao

This study aims to investigate the effect of V doping on the microstructure, chemical stability, mechanical and vacuum tribological behavior of sputtered MoS2 coatings.

Abstract

Purpose

This study aims to investigate the effect of V doping on the microstructure, chemical stability, mechanical and vacuum tribological behavior of sputtered MoS2 coatings.

Design/methodology/approach

The MoS2-V coatings are fabricated via tuning V target current by magnetron sputtering technique. The structural characteristic and elemental content of the coatings are measured by field emission scanning electron microscopy, X-ray diffractometer, electron probe X-ray micro-analyzer, Raman, X-ray photoelectron spectroscopy, high resolution transmission electron microscope and energy dispersive spectrometer. The hardness of the deposited coatings are tested by a nanoindentation technique. The vacuum tribological properties of MoS2-V coatings are studied by a ball-on-disc tribometer.

Findings

Introducing V into the MoS2 coatings results in a more compact microstructure. The hardness of the coatings increases with the doping of V. The MoS2-V coating deposited at a current of 0.2 A obtains the lowest friction coefficient (0.043) under vacuum. As the amount of V doping increases, the wear rate of the coating decreases first and then increases, among which the coating deposited at a current of 0.5 A has the lowest wear rate of 2.2 × 10–6 mm3/N·m.

Originality/value

This work elucidates the role of V doping on the lubrication mechanism of MoS2 coatings in a vacuum environment, and the MoS2-V coating is expected to be applied as a solid lubricant in space environment.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 July 2023

Reza Amini and Pooneh Kardar

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their…

Abstract

Purpose

This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their effects on the anti-corrosion features in the presence of the eco-friendly ionic liquids (ILs).

Design/methodology/approach

In this research, PPy with different forms of nanoclay were used. Moreover, ILs additive is used to enhance the better dispersion process of clay and PPy nanoparticles in the resin.

Findings

As a result, the IL additive in the formulation of nano-composite coatings greatly improves the dispersion process of clay and PPy nanoparticles in the resin. Due to its high compatibility with polyurethane resin and clay and PPy nanoparticles, this additive contains a high dispersing power to disperse the investigated nanoparticles in the resin matrix.

Research limitations/implications

High polarity of ILs as well as abilities to dissolve both mineral and organic materials, they can provide the better chemical processes compared to common solvents.

Practical implications

IL abilities have not been discovered to a large extent such as catalysts and detectors.

Social implications

ILs have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic conductivity. Thus, they have received much attention as green media for various chemistry processes.

Originality/value

The simultaneous existence of clay, PPy and IL additive in the nano-composite coating formulation is responsible for the high corrosion resistance of the coating.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 June 2023

Matthew Philip Masterton, David Malcolm Downing, Bill Lozanovski, Rance Brennan B. Tino, Milan Brandt, Kate Fox and Martin Leary

This paper aims to present a methodology for the detection and categorisation of metal powder particles that are partially attached to additively manufactured lattice structures…

58

Abstract

Purpose

This paper aims to present a methodology for the detection and categorisation of metal powder particles that are partially attached to additively manufactured lattice structures. It proposes a software algorithm to process micro computed tomography (µCT) image data, thereby providing a systematic and formal basis for the design and certification of powder bed fusion lattice structures, as is required for the certification of medical implants.

Design/methodology/approach

This paper details the design and development of a software algorithm for the analysis of µCT image data. The algorithm was designed to allow statistical probability of results based on key independent variables. Three data sets with a single unique parameter were input through the algorithm to allow for characterisation and analysis of like data sets.

Findings

This paper demonstrates the application of the proposed algorithm with three data sets, presenting a detailed visual rendering derived from the input image data, with the partially attached particles highlighted. Histograms for various geometric attributes are output, and a continuous trend between the three different data sets is highlighted based on the single unique parameter.

Originality/value

This paper presents a novel methodology for non-destructive algorithmic detection and categorisation of partially attached metal powder particles, of which no formal methods exist. This material is available to download as a part of a provided GitHub repository.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 August 2023

Dalei Zhang, Xinwei Zhang, Enze Wei, Xiaohui Dou and Zonghao He

This study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy…

Abstract

Purpose

This study aims to improve the corrosion resistance of TA2-welded joints by superhydrophobic surface modification using micro-arc oxidation technology and low surface energy substance modification.

Design/methodology/approach

The microstructure and chemical state of the superhydrophobic film layer were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy, three-dimensional morphology, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared absorption spectroscopy. The influence of the superhydrophobic film layer on the corrosion resistance of TA2-welded joints was investigated using classical electrochemical testing methods.

Findings

The characterization results showed that the super hydrophobic TiO2 ceramic membrane was successfully constructed on the surface of the TA2-welded joint, and the construction of the super hydrophobic film greatly improved the corrosion resistance of the TA2-welded joint.

Originality/value

The superhydrophobic TiO2 ceramic membrane has excellent corrosion resistance. The micro nanostructure in the superhydrophobic film can intercept air to form an air layer to prevent the corrosion medium from contacting the surface, thus, improving the corrosion resistance of the sample.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 May 2024

Shan Gao, Bin Wang, Xinjie Yao and Quan Yuan

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Abstract

Purpose

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Design/methodology/approach

Alloy 800 and 690 were immersed in chloride and thiosulfate-containing solution at 300°C up to five days, and then the surface film was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometers (EDX).

Findings

Through static immersion experiments in a high-temperature and high-pressure water environment, the alloy samples covered by surface film after five days of immersion were obtained. The morphology of the surface film was characterized at both horizontal and cross-sectional scales using SEM and focused ion beam-TEM techniques. It was observed that due to the influence of the quartz lining, the surface film primarily exhibited a bilayered structure. The first layer contained a significant amount of SiO2, with a higher content of metal hydroxides compared to metal oxides. The second layer was predominantly composed of Fe, Ni and Cr, with a higher content of metal oxides compared to metal hydroxides.

Originality/value

The results showed that the materials of the lining of the autoclave could significantly influence the film composition of the tested material, which should be paid attention when analyzing the corrosion mechanism at high temperature.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 February 2024

Parsa Aghaei and Sara Bayramzadeh

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological…

Abstract

Purpose

This study aims to investigate how trauma team members perceive technological equipment and tools in the trauma room (TR) environment and to identify how the technological equipment could be optimized in relation to the TR’s space.

Design/methodology/approach

A total of 21 focus group sessions were conducted with 69 trauma team members, all of whom worked in Level I TRs from six teaching hospitals in the USA.

Findings

The collected data was analyzed and categorized into three parent themes: imaging equipment, assistive devices and room features. The results of the study suggest that trauma team members place high importance on the availability and versatility of the technological equipment in the TR environment. Although CT scans are a usual procedure necessity in TRs, few facilities were optimized for easy access to CT-scanners for the TR. The implementation of cameras and screens was suggested as an improvement to accommodate situational awareness. Rapid sharing of data, such as imaging results, was highly sought after. Unorthodox approaches, such as the use of automatic doors, were associated with slowing down the course of actions.

Practical implications

This study provides health-care designers with the knowledge they need to make informed decisions when designing TRs. It will cover key considerations such as room layout, equipment selection, lighting and controls. Implementing the strategies will help minimize negative patient outcomes.

Originality/value

Level I TRs are a critical element of emergency departments and designing them correctly can significantly impact patient outcomes. However, designing a TR can be a complex process that requires careful consideration of various factors, including patient safety, workflow efficiency, equipment placement and infection control. This study suggests multiple considerations when designing TRs.

Details

Facilities , vol. 42 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of 471