Search results

1 – 10 of over 4000
Article
Publication date: 28 April 2020

Nandakishor Sirdeshpande and Vishwanath Udupi

Wireless communication channel provides a wide area of applications in the field of communication, distributed sensor network and so on. The prominence of the wireless

Abstract

Purpose

Wireless communication channel provides a wide area of applications in the field of communication, distributed sensor network and so on. The prominence of the wireless communication channel is because of its robust nature and the sustainability for the precise ranging and the localization. The precision and accuracy of the wireless communication channel largely depend on the localization. The development of the wireless communication channel with improved benefits needs the accurate channel model.

Design/methodology/approach

This paper characterizes the tangential path loss model in the WINNER based wireless communication channel model. The measurements taken in the WINNER channel model are compared with the tangential path loss characterized WINNER Channel model.

Findings

The model operates well over the varying antenna orientations, measurement condition and the propagation condition. The proposed tangential path loss model is performing well over the various outdoor scenarios.

Originality/value

The proposed characterization shows change in the small-scale parameters (SSP), such as power, delay, angle of arrival and angle of departure as well as the large-scale parameters (LSP), such as RMS delay spread, shadowing, path loss and Ricean factor associated with the model.

Details

Data Technologies and Applications, vol. 54 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 12 February 2020

Peter Reji Ramanatt, K. Natarajan and K.R. Shobha

Aircraft manufacturers for a long time have been looking to reduce the weight of on board equipment to enhance performance both from commercial aspect and from military aspect…

Abstract

Purpose

Aircraft manufacturers for a long time have been looking to reduce the weight of on board equipment to enhance performance both from commercial aspect and from military aspect. The existing wired technology, using cables to connect different on board line replaceable unit apart from increasing the weight also increases the complexity related to electromagnetic interference, installation and maintenance. With continuous technology upgradation in the wireless domain, aviation industry is in the process of using wireless technology for intra-aircraft communication. Wireless technology can meet most of the challenges of modern avionics systems and significantly reduce the weight. This paper aims to look at various aspects of implementing a wireless network including issues related to wired network, aircraft channel, interference issues, suitable wireless protocols for aircraft applications and security aspects.

Design/methodology/approach

The paper has relied on literature study on wireless avionics intra-communications (WAIC) and the research work carried out in specific areas related to channel inside an aircraft, interference issues of wireless systems with onboard and external systems operating in the same band and security issues related to wireless network and security requirements of implementing an avionics wireless network (AWN). To identify suitable wireless protocol for AWN literature review and simulation to compare different protocols was carried out.

Findings

A single wireless protocol may not be suitable for all aircraft systems, and therefore, there may be a requirement to use multiple technologies. Mutual interference is not expected between WAIC systems with on board and external systems operating in the same band. The channel inside an aircraft is expected to be Rician (LOS) or Rayleigh (NLOS). However, additional measurements may have to be undertaken to have a generalized channel model. Security aspects in an AWN are critical and needs to be analyzed in detail prior to any wireless deployment.

Practical implications

Implementation of wireless technology can pave the way for usage of wireless technology for future generation avionics. With International Telecommunication Union allotting dedicated band for WAIC operations, considerable amount of research has been initiated in this field. It is believed that in the coming 2-3 years, the designers will be ready to replace the existing data wires with wireless transceivers. With radio technical commission for aeronautics and EURACAE involved in development of minimum operations performance standards for WAIC systems use of wireless for intra communication is bound to happen. Therefore, it is necessary to look at different issues for integrating wireless in the avionics domain.

Originality/value

The existing studies have been carried out in individual domains of using wireless in avionics. Separate studies and research work has been carried out for identifying wireless protocols, aircraft channel models, interference issues and security aspects. The paper has attempted to look at all these aspects together including certification.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 June 2012

Bilal Erman Bilgin and Vehbi Cagri Gungor

High packet error rates and variable link capacity due to harsh electric power system environments make reliable communication a challenging task for WSN in smart grid. Therefore…

Abstract

Purpose

High packet error rates and variable link capacity due to harsh electric power system environments make reliable communication a challenging task for WSN in smart grid. Therefore, to increase network reliability and hence, to improve smart grid system performance, there is an urgent need for reliable communication protocols. The purpose of this paper is to propose an Adaptive Forward Error Correction (AFEC) mechanism for different smart grid environments, including 500 kV outdoor substation and underground transformer vaults, to address these challenges.

Design/methodology/approach

This paper presents the comparative performance evaluations of proposed AFEC mechanism for different smart grid environments. Simulation experiments have been performed by extending the ns‐2 network simulator. It also introduces existing and potential smart grid applications, research challenges, and opportunities of smart grid.

Findings

Comparative performance evaluations show that the proposed AFEC mechanism achieves high communications reliability without causing unnecessary network overhead. Also the advantages of existing smart grid applications have been presented.

Originality/value

The paper shows that high communications reliability without causing unnecessary network overhead has been achieved. Also comprehensive reviews of WSN smart grid applications have been presented.

Details

Sensor Review, vol. 32 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 January 2016

Shravan Kumar Bandari, V.V. Mani and A. Drosopoulos

The purpose of this paper is to study the performance of generalized frequency division multiplexing (GFDM) in some frequency selective fading channels. The exact symbol error…

3269

Abstract

Purpose

The purpose of this paper is to study the performance of generalized frequency division multiplexing (GFDM) in some frequency selective fading channels. The exact symbol error rate (SER) expressions in Hoyt (Nakagami-q) and Weibull-v fading channels are derived. A GFDM transceiver simulation test bed is provided to validate the obtained analytical expressions.

Design/methodology/approach

Modern cellular system demands higher data rates, very low-latency transmissions and sensors with ultra low-power consumption. Current cellular systems of the fourth generation (4G) are not able to meet these emerging demands of future mobile communication systems. To address this requirement, GFDM, a novel multi-carrier modulation technique is proposed to satisfy the future needs of fifth generation technology. GFDM is a block-based transmission method where pulse shaping is applied circularly to individual subcarriers. Unlike traditional orthogonal frequency division multiplexing, GFDM transmits multiple symbols per subcarrier. The authors have used the probability density function approach in solving the final analytical expressions.

Findings

Detailed analysis of GFDM performance under Hoyt-q, Weibull-v and Log-Normal Shadowing fading channels. Exact analytical formulae were derived which support the simulations carried out by authors and other authors. The exact dependence of SER on fading parameters and roll-off factor α in the raised cosine pulse shape filter was determined.

Practical implications

Development and fabrication of high-performance GFDM systems under fading channel conditions.

Originality/value

Theoretical support to simulated system performance.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 March 2015

Łukasz Januszkiewicz and Sławomir Hausman

The purpose of this paper is to compare the properties of simplified physical and corresponding numerical human body models (phantoms) and verify their applicability to path loss…

Abstract

Purpose

The purpose of this paper is to compare the properties of simplified physical and corresponding numerical human body models (phantoms) and verify their applicability to path loss modeling in narrowband and ultra-wideband on-body wireless body area networks (WBANs). One of the models has been proposed by the authors.

Design/methodology/approach

Two simplified numerical and two physical phantoms for body area network on-body channel computer simulation and field measurement results are presented and compared.

Findings

Computer simulations and measurements which were carried out for the proposed simplified six-cylinder model with various antenna locations lead to the general conclusion that the proposed phantom can be successfully used for experimental investigation and testing of on-body WBANs both in ISM and UWB IEEE 802.15.6 frequency bands.

Research limitations/implications

Usage of the proposed phantoms for the simulation/measurement of the specific absorption rate and for off-body channels are not within the scope of this paper.

Practical implications

The proposed simplified phantom can be easily made with a low cost in other laboratories and be used both for research and development of WBAN technologies. The model is most suitable for wearable antenna radiation pattern simulation and measurement.

Social implications

Presented results facilitate applications of WBANs in medicine and health monitoring.

Originality/value

A new six-cylinder phantom has been proposed. The proposed simplified phantom can be easily made with a low cost in other laboratories and be used both for research and development of WBAN technologies.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 December 2021

Martin Rakús, Peter Farkaš and Tomáš Páleník

The purpose of this paper is to directly link information technology (IT) education with real-world phenomena.

Abstract

Purpose

The purpose of this paper is to directly link information technology (IT) education with real-world phenomena.

Design/methodology/approach

The selected objectives are achieved by modeling line of sight (LOS) and nonline of sight (NLOS) mobile channels using corresponding distributions. Within the described experiments, students verify whether modeled generators generate random variables accordingly to the selected distribution. The results of observations are directly compared with theoretical expectations. The methodology was evaluated by students via questionnaires.

Findings

The results show that the proposed methodology can help graduate or undergraduate students better comprehend lectured material from mobile communications or mathematical statistics.

Originality/value

The hands on experience using the EMONA system make the approach original.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 8 June 2020

Vandana Bagde and Dethe C. G

A recent innovative technology used in wireless communication is recognized as multiple input multiple output (MIMO) communication system and became popular for quicker data…

Abstract

Purpose

A recent innovative technology used in wireless communication is recognized as multiple input multiple output (MIMO) communication system and became popular for quicker data transmission speed. This technology is being examined and implemented for the latest broadband wireless connectivity networks. Though high-capacity wireless channel is identified, there is still requirement of better techniques to get increased data transmission speed with acceptable reliability. There are two types of systems comprising of multi-antennas placed at transmitting and receiving sides, of which first is diversity technique and another is spatial multiplexing method. By making use of these diversity techniques, the reliability of transmitting signal can be improved. The fundamental method of the diversity is to transform wireless channel such as Rayleigh fading into steady additive white Gaussian noise (AWGN) channel which is devoid of any disastrous fading of the signal. The maximum transmission speed that can be achieved by spatial multiplexing methods is nearly equal to channel capacity of MIMO. Conversely, for diversity methods, the maximum speed of broadcasting is much lower than channel capacity of MIMO. With the advent of space–time block coding (STBC) antenna diversity technique, higher-speed data transmission is achievable for spatially multiplexed multiple input multiple output (SM-MIMO) system. At the receiving end, detection of the signal is a complex task for system which exhibits SM-MIMO. Additionally, a link modification method is implemented to decide appropriate coding and modulation scheme such as space diversity technique STBC to use two-way radio resources efficiently. The proposed work attempts to improve detection of signal at receiving end by employing STBC diversity technique for linear detection methods such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC) and maximum likelihood detection (MLD). The performance of MLD has been found to be better than other detection techniques.

Design/methodology/approach

Alamouti's STBC uses two transmit antennas regardless of the number of receiver antennas. The encoding and decoding operation of STBC is shown in the earlier cited diagram. In the following matrix, the rows of each coding scheme represent a different time instant, while the columns represent the transmitted symbols through each different antenna. In this case, the first and second rows represent the transmission at the first and second time instant, respectively. At a time t, the symbol s1 and symbol s2 are transmitted from antenna 1 and antenna 2, respectively. Assuming that each symbol has duration T, then at time t + T, the symbols –s2* and s1*, where (.)* denotes the complex conjugate, are transmitted from antenna 1 and antenna 2, respectively. Case of one receiver antenna: The reception and decoding of the signal depend on the number of receiver antennas available. For the case of one receiver antenna, the received signals are received at antenna 1 , hij is the channel transfer function from the jth transmit antenna and the ith receiver antenna, n1 is a complex random variable representing noise at antenna 1 and x (k) denotes x at time instant k ( at time t + (k – 1)T.

Findings

The results obtained for maximal ratio combining (MRC) with 1 × 4 scheme show that the BER curve drops to 10–4 for signal-to-noise (SNR) ratio of 10 dB, whereas for MRC 1 × 2 scheme, the BER drops down to 10–5 for SNR of 20 dB. Results obtained in Table 1 show that when STBC is employed for MRC with 1 × 2 scheme (one antenna at transmitter node and two antennas at receiver node), BER curve comes down to 0.0076 for Eb/N0 of 12. Similarly, when MRC with 1 × 4 antenna scheme is implemented, BER drops down to 0 for Eb/N0 of 12. Thus, it can be concluded from the obtained graph that the performance of MRC with STBC gives improved results. When STBC technique is used with 3 × 4 scheme, at SNR of 10 dB, BER comes nearer to 10–6 (figure 7.3). It can be concluded from the analytics observed between AWGN and Rayleigh fading channel that for AWGN channel, BER is found to be equal to 0 for SNR value of 13.5 dB, whereas for Rayleigh fading channel, BER is observed nearer to 10–3 for Eb/N0 = 15. Simulation results (in figure 7.2) from the analytics show BER drops to 0 for SNR value of 12 dB.

Research limitations/implications

Optimal design and successful deployment of high-performance wireless networks present a number of technical challenges. These include regulatory limits on useable radio-frequency spectrum and a complex time-varying propagation environment affected by fading and multipath. The effect of multipath fading in wireless systems can be reduced by using antenna diversity. Previous studies show the performance of transmit diversity with narrowband signals using linear equalization, decision feedback equalization, maximum likelihood sequence estimation (MLSE) and spread spectrum signals using a RAKE receiver. The available IC techniques compatible with STBC schemes at transmission require multiple antennas at the receiver. However, if this not a strong constraint at the base station level, it remains a challenge at the handset level due to cost and size limitation. For this reason, SAIC technique, alternative to complex ML multiuser demodulation technique, is still of interest for 4G wireless networks using the MIMO technology and STBC in particular. In a system with characteristics similar to the North American Digital mobile radio standard IS-54 (24.3 K symbols per sec. with an 81 Hz fading rate), adaptive retransmission with time deviation is not practical.

Practical implications

The evaluation of performance in terms of bit error rate and convergence time which estimates that MLD technique outperforms in terms of received SNR and low decoding complexity. MLD technique performs well but when higher number of antennas are used, it requires more computational time and thereby resulting in increased hardware complexity. When MRC scheme is implemented for singe input single output (SISO) system, BER drops down to 10–2 for SNR of 20 dB. Therefore, when MIMO systems are employed for MRC scheme, improved results based on BER versus SNR are obtained and are used for detecting the signal; comparative study based on different techniques is done. Initially ZF detection method is utilized which was then modified to ZF with successive interference cancellation (ZFSIC). When successive interference cancellation scheme is employed for ZFSIC, better performance is observed as compared to the estimation of ML and MMSE. For 2 × 2 scheme with QPSK modulation method, ZFSIC requires more computational time as compared to ZF, MMSE and ML technique. From the obtained results, the conclusion is that ZFSIC gives the improved results as compared to ZF in terms of BER ratio. ZF-based decision statistics can be produced by the detection algorithm for a desired sub-stream from the received vector whichs consist of an interference which occurred from previous transmitted sub-streams. Consequently, a decision on the secondary stream is made and contribution of the noise is regenerated and subtracted from the vector received. With no involvement of interference cancellation, system performance gets reduced but computational cost is saved. While using cancellation, as H is deflated, coefficients of MMSE are recalculated at each iteration. When cancellation is not involved, the computation of MMSE coefficients is done only once, because of H remaining unchanged. For MMSE 4 × 4 BPSK scheme, bit error rate of 10–2 at 30 dB is observed. In general, the most thorough procedure of the detection algorithm is the computation of the MMSE coefficients. Complexity arises in the calculation of the MMSE coefficients, when the antennas at the transmitting side are increased. However, while implementing adaptive MMSE receivers on slow channel fading, it is probable to recover the signal with the complications being linear in the antennas of transmitter node. The performance of MMSE and successive interference cancellation of MMSE are observed for 2 × 2 and 4 × 4 BPSK and QPSK modulation schemes. The drawback of MMSE SIC scheme is that the first detected signal observes the noise interference from (NT-1) signals, while signals processed from every antenna later observe less noisy interference as the process of cancellation progresses. This difficulty could be overcome by using OSIC detection method which uses successive ordering of the processed layers in the decreasing power of the signal or by power allocation to the signal transmitted depending on the order of the processing. By using successive scheme, a computation of NT delay stages is desired to bring out the abandoned process. The work also includes comparison of BER with various modulation schemes and number of antennas involved while evaluating the performance. MLD determines the Euclidean distance among the vector signal received and result of all probable transmitted vector signals with the specified channel H and finds the one with the minimum distance. Estimated results show that higher order of the diversity is observed by employing more antennas at both the receiving and transmitting ends. MLD with 8 × 8 binary phase shift keying (BPSK) scheme offers bit error rate near to 10–4 for SNR (16 dB). By using Altamonti space ti.

Social implications

It should come as no surprise that companies everywhere are pushing to get products to market faster. Missing a market window or a design cycle can be a major setback in a competitive environment. It should be equally clear that this pressure is coming at the same time that companies are pushing towards “leaner” organizations that can do more with less. The trends mentioned earlier are not well supported by current test and measurement equipment, given this increasingly high-pressure design environment: in order to measure signals across multiple domains, multiple pieces of measurement equipment are needed, increasing capital or rental expenses. The methods available for making cross-domain, time-correlated measurements are inefficient, reducing engineering efficiency. When only used on occasion, the learning curve to understand how to use equipment for logic analysis, time domain and RF spectrum measurements often requires an operator to re-learn each piece of separate equipment. The equipment needed to measure wide bandwidth, time-varying spectral signals is expensive, again increasing capital or rental expenses. What is needed is a measurement instrument with a common user interface that integrates multiple measurement capabilities into a single cost-effective tool that can efficiently measure signals in the current wide-bandwidth, time-correlated, cross-domain environments. The market of wireless communication using STBCs has large scope of expansion in India. Therefore, the proposed work has techno-commercial potential and the product can be patented. This project shall in turn be helpful for remote areas of the nearby region particularly in Gadchiroli district and Melghat Tiger reserve project of Amravati district, Nagjira and so on where electricity is not available and there is an all the time problem of coverage in getting the network. In some regions where electricity is available, the shortage is such that they cannot use it for peak hours. In such cases, stand-alone space diversity technique, STBC shall help them to meet their requirements in making connection during coverage problem, thereby giving higher data transmission rates with better QOS (quality of service) with least dropped connections. This trend towards wireless everywhere is causing a profound change in the responsibilities of embedded designers as they struggle to incorporate unfamiliar RF technology into their designs. Embedded designers frequently find themselves needing to solve problems without the proper equipment needed to perform the tasks.

Originality/value

Work is original.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 2/3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 8 April 2022

Bhanu Prakash Saripalli, Gagan Singh and Sonika Singh

Non-linear power–voltage characteristics of solar cell and frequently changing output due to variation in solar irradiance caused by movement of clouds are the major issues need…

Abstract

Purpose

Non-linear power–voltage characteristics of solar cell and frequently changing output due to variation in solar irradiance caused by movement of clouds are the major issues need to be considered in photovoltaic (PV) penetration to maintain the power quality of the grid. It is important for a PV module to always function at its maximum available power point to increase the efficiency and to maintain the grid stability. A possible solution to mitigate these generation fluctuations is the use of an electric double-layer capacitor or supercapacitor energy storage device, which is an efficient storage device for power smoothing applications. This study aims to propose a power smoothing control approach to smoothen out the output power variations of a solar PV system using a supercapacitor energy storage device.

Design/methodology/approach

To extract the maximum possible power from a PV panel, there are several maximum power points tracking (MPPT) algorithms developed in literature. Fuzzy logic controller-MPPT method is used in this work as it is a very efficient and popular technique which responds quickly under varying ecological conditions, reduced computational complexity and does not depend on any system constraints. Fuzzy logic-based MPPT controller by Boost DC–DC converter is developed for operating the PV panels at available maximum power point. Fuzzy logic-proportional integral (PI) charge controller is implemented by Buck–Boost converter to provide the constant current and suitable voltage for supercapacitor and to achieve better power smoothing. PI charge controller is preferred in this work as it offers better outcomes and is very easy to implement.

Findings

Simulation results conclude that the proposed power smoothing control approach can efficiently smooth out the power variations under variable irradiance and temperature situations. To confirm the accurateness of the proposed system, it is validated for poly-crystalline PV module and comparison of results is done by using different case study with and without the use of an energy storage system under change in irradiance condition. The proposed system is developed and examined on MATLAB/Simulink environment.

Originality/value

The performance comparison between PV power output with and without the use of a supercapacitor energy storage device under different Case Studies shows that the improved performance in smoothing of power output was achieved with the use of a supercapacitor energy storage device.

Article
Publication date: 3 August 2020

Vijaya P and Binu D

Abstract

Details

Data Technologies and Applications, vol. 54 no. 3
Type: Research Article
ISSN: 2514-9288

Article
Publication date: 8 January 2021

S. Vaithyasubramanian and R. Sundararajan

Purpose of this study is to classify the states of Markov Chain for the implementation of Markov Password for effective security. Password confirmation is more often required in…

Abstract

Purpose

Purpose of this study is to classify the states of Markov Chain for the implementation of Markov Password for effective security. Password confirmation is more often required in all authentication process, as the usage of computing facilities and electronic devices have developed hugely to access networks. Over the years with the increase in numerous Web developments and internet applications, each platform needs ID and password validation for individual users.

Design/methodology/approach

In the technological development of cloud computing, in recent times, it is facing security issues. Data theft, data security, denial of service, patch management, encryption management, key management, storage security and authentication are some of the issues and challenges in cloud computing. Validation in user login authentications is generally processed and executed by password. To authenticate universally, alphanumeric passwords are used. One of the promising proposed methodologies in this type of password authentication is Markov password. Markov passwords – a rule-based password formation are created or generated by using Markov chain. Representation of Markov password formation can be done by state space diagram or transition probability matrix. State space classification of Markov chain is one of the basic and significant properties. The objective of this paper is to classify the states of Markov chain to support the practice of this type of password in the direction of effective authentication for secure communication in cloud computing. Conversion of some sample obvious password into Markov password and comparative analysis on their strength is also presented in this paper. Analysis on strength of obvious password of length eight has shown range of 7%–9% although the converted Markov password has shown more than 82%. As an effective methodology, this password authentication can be implemented in cloud portal and password login validation process.

Findings

The objective of this paper is to classify the states of Markov chain to support the practice of this type of password in the direction of effective authentication for secure communication in cloud computing. Conversion of some sample obvious password into Markov password and comparative analysis on their strength is also presented in this paper.

Originality/value

Validation in user login authentications is generally processed and executed by password. To authenticate universally, alphanumeric passwords are used. One of the promising proposed methodologies in this type of password authentication is Markov password.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of over 4000