Search results

1 – 10 of 106
Article
Publication date: 29 May 2019

Xue Ping Wang, He Ma and Jun Zhang

The increasing demands of high-speed railway transportation aggravate the wheel and rail surface wear. It is of great significance to repair the worn wheel timely by predicting…

Abstract

Purpose

The increasing demands of high-speed railway transportation aggravate the wheel and rail surface wear. It is of great significance to repair the worn wheel timely by predicting the wheel and rail surface wear, which will improve both the service life of the wheel and rail and the safe operation of the train. The purpose of this study is to propose a new prediction method of wheel tread wear, which can provide some reference for selecting proper re-profiling period of wheel.

Design/methodology/approach

The standard and worn wheel profiles were first matched with the standard 60N rail profile, and then the wheel/rail finite element models (FEMs) were established for elastic-plastic contact calculation. A calculation method of the friction work was proposed based on contact analysis. Afterwards, a simplified method for calculating wheel tread wear was presented and the wear with different running mileages was predicted.

Findings

The wheel tread wear increased the relative displacement and friction of contact spots. There was obvious fluctuation in the wheel tread friction work curve of the worn model. The wear patterns predicted in the present study were in accordance with the actual situation, especially in the worn model.

Originality/value

In summary, the simplified method based on FEM presented in this paper could effectively calculate wheel tread wear and predict the wear patterns. It would provide valuable clews for the wheel repair work.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

The Handbook of Road Safety Measures
Type: Book
ISBN: 978-1-84855-250-0

Article
Publication date: 18 July 2023

Hongxiao Li and Li Li

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Abstract

Purpose

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Design/methodology/approach

This study combines experimental testing and numerical simulation to investigate the influence of wheel profile wear coupled with the friction coefficient on the vehicle dynamic response.

Findings

For the test route in this paper, it is recommended to control the friction coefficient on straight sections between 0.25 and 0.3, and on curved sections between 0.2 and 0.3. This satisfies the required adhesion coefficient for normal train traction and braking, while also ensuring the straight running performance and curve negotiation performance of the vehicle.

Practical implications

Reasonable friction coefficient ranges are proposed for straight and curved track lines to improve the operational safety and economy of the vehicles. Moreover, this study can provide a theoretical basis and reference direction for developing anti-wear measures for rail vehicles operating on fixed routes.

Originality/value

Considering the wear characteristics of operating vehicles and the dynamic changes in the wear profile, this paper explores the adaptability of different degrees of wheel wear profiles to different friction coefficients. Based on the response characteristics of vehicle dynamics, reasonable lubrication recommendations are proposed for this operating vehicle.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2022

Saeed Mahjouri, Rasoul Shabani and Martin Skote

Due to the static condition of the wheels at touchdown, they skid on the runway, which may cause the tyres to burn and wear. This phenomenon occurs in a fraction of a second…

Abstract

Purpose

Due to the static condition of the wheels at touchdown, they skid on the runway, which may cause the tyres to burn and wear. This phenomenon occurs in a fraction of a second, known as the spin-up period. The purpose of this paper is to introduce a new strategy to reduce the horizontal force, tyre temperature and wear during the spin-up period.

Design/methodology/approach

First, the dynamics of two different phases of landing, namely, spin-up and breaking phases, are reviewed. Second, a strategy to prevent excessive temperature and wear of the tyre is presented.

Findings

It is found that using a lubricant and coolant, such as water, at the spin-up stretch of the runway is a simple and practical solution to prevent excessive temperature and wear of the tyre. It is revealed that, despite increasing the spin-up period, the rise of the tyre temperature is eliminated and the material properties are preserved for effective braking. A rough quantitative analysis demonstrates that the wetting of tyres in the spin-up phase decreases the loads and tyre wear effectively.

Practical implications

Wetting the touchdown region of the runway without significant areas of standing water is the most practical strategy with the technology available today.

Originality/value

A new strategy is presented for landing with reduced tyre wear. It is the hope that this paper can inspire continuous efforts to realize the implementation of the strategy.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 November 2018

AiHua Zhu, Si Yang, Qiang Li, JianWei Yang, Xi Li and YiDong Xie

The purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict…

281

Abstract

Purpose

The purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict wheel wear and to guide its maintenance.

Methodology

By using the SIMPACK and MATLAB software, numerical simulation analysis of metro wheel wear is carried out based on Hertz theory, the FASTSIM algorithm and the Archard model. First of all, the vehicle dynamics model is established to calculate the motion relationship and external forces of wheel-rail in the SIMPACK software. Then, the normal force of wheel-rail is solved based on Hertz theory, and the tangential force of wheel-rail is calculated based on the FASTSIM algorithm through the MATLAB software. Next, in the MATLAB software, the wheel wear is calculated based on the Archard model, and a new wheel profile is obtained. Finally, the new wheel profile is re-input into the vehicle system dynamics model in the SIMPACK software to carry out cyclic calculation of wear.

Findings

The results show that the setting order of different curves has an obvious influence on wear when the proportion of the straight track and the curve is fixed. With the increase in running mileage, the severe wear zone is shifted from tread to flange root under the condition of the sequence-type track, but the wheel wear distribution is basically stable for the unit-type track, and their wear growth rates become closer. In the tracks with different straight-curved ratio, the more proportion the curved tracks occupy, the closer the severe wear zone is shifted to flange root. At the same time, an increase in weight of the vehicle load will aggravate the wheel wear, but it will not change the distribution of wheel wear. Compared with the measured data of one city B type metro in China, the numerical simulation results of wheel wear are nearly the same with the measured data.

Practical implications

These results will be helpful for metro tracks planning and can predict the trend of wheel wear, which has significant importance for the vehicle to do the repair operation. At the same time, the security risks of the vehicle are decreased economically and effectively.

Originality/value

At present, many scholars have studied the influence of metro tracks on wheel wear, but mainly focused on a straight line or a certain radius curve and neglected the influence of track sequence and track composition. This study is the first to examine the influence of track sequence on metro wheel wear by comparing the sequence-type track and unit-type track. The results show that the track sequence has a great influence on the wear distribution. At the same time, the influence of track composition on wheel wear is studied by comparing different straight-curve ratio tracks; therefore, wheel wear can be predicted integrally under different track conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 19 May 2022

Maorui Hou, Fengshou Liu and Xiaoyi Hu

In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway (HSR) in China, 172 rail profile measurement points and…

Abstract

Purpose

In order to systematically grasp the changes and matching characteristics of wheel and rail profiles of high speed railway (HSR) in China, 172 rail profile measurement points and 384 wheels of 6 high-speed electric motive unites (EMUs) were selected on 6 typical HSR lines, including Beijing–Shanghai, Wuhan–Guangzhou, Harbin–Dalian, Lanzhou–Xinjiang, Guiyang–Guangzhou and Dandong–Dalian for a two-year field test.

Design/methodology/approach

Based on the measured data, the characteristics of rail and wheel wear were analyzed by mathematical statistics method. The equivalent conicity of wheel and rail matching in a wheel reprofiling cycle was analyzed by using the measured rail profile.

Findings

Results showed that when the curve radius of HSR was larger than 2,495 m, the wear rate of straight line and curve rail was almost the same. For the line with annual traffic gross weight less than 11 Mt, the vertical wear of rail was less than 0.01 mm. The wear rate of the rail with the curve radius less than 800 m increased obviously. The wheel tread wear of EMUs on Harbin–Dalian line, Lanzhou–Xinjiang line and Dandong–Dalian line was relatively large, and the average wear rate of tread was about 0.05–0.06 mm·(10,000 km)−1, while that of Beijing–Shanghai line, Wuhan–Guangzhou line and Guiyang–Guangzhou line was about 0.03–0.035 mm·(10,000 km)−1. When the wear range was small, the equivalent conicity increased with the increase of wheel tread wear. When the wear range of wheel was wide, the wheel–rail contact points were evenly distributed, and the equivalent conicity did not increase obviously.

Originality/value

This research proposes the distribution range of the equivalent conicity in one reprofiling cycle of various EMU trains, which provides guidance for the condition-based wheel reprofiling.

Details

Railway Sciences, vol. 1 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 1 August 1945

G.W. Drury

CASTORING stability requires automatic return, after displacement, of the castoring wheel to the central position. A hinged wheel may be automatically stable under static…

Abstract

CASTORING stability requires automatic return, after displacement, of the castoring wheel to the central position. A hinged wheel may be automatically stable under static conditions, but dynamically unstable, or vice versa. Dynamic stability may be defined as the condition in which the forces on the wheel in motion secure its return to the path of direction of motion.

Details

Aircraft Engineering and Aerospace Technology, vol. 17 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 8 September 2022

Xie Yidong, Sun Peiweni, Li Qiang, Fu Caozheng, AiHua Zhu, Jianwei Yang and Chaochao Ma

The CL60 steel wheels of metro vehicles running on a specific line need frequent reprofiling due to rapid wear. Considering this problem, a new material for metro wheels was…

124

Abstract

Purpose

The CL60 steel wheels of metro vehicles running on a specific line need frequent reprofiling due to rapid wear. Considering this problem, a new material for metro wheels was designed. The friction and wear properties of the new material were studied, to reduce the wear rate and extend the service life of metro wheels.

Design/methodology/approach

Wheel specimens made of the two steel materials were tested using a GPM-60 wear tester under laboratory conditions. A field test was conducted on a specific metro line to track the wear in wheels made of the new material and CL60 steel wheels.

Findings

Under the laboratory conditions, the wear loss in the new material was 24.44% lower than that in CL60 steel. The field test revealed that compared to CL60 steel wheels, the new CL60 steel wheels showed a 19.42% decrease in tread wear on average. The field measurements for the wheels made of the new material are consistent with the results of laboratory simulation, suggesting relatively high wear resistance of the new material.

Practical implications

The results of the study can provide guidance on how to properly select steel material for metro wheels to avoid rapid wear and frequent reprofiling and reduce operating costs.

Originality/value

A new material for metro wheels was designed and developed by optimizing the content of Cr, Si, Mn, V and other elements. This material proved to have better wear resistance in both laboratory and field testing.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 1968

ALTHOUGH several divisions within the Dunlop Company are supplying equipment for the Jaguar aircraft, the major work being under‐taken is in the field of tyres, wheels and brakes.

Abstract

ALTHOUGH several divisions within the Dunlop Company are supplying equipment for the Jaguar aircraft, the major work being under‐taken is in the field of tyres, wheels and brakes.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1968

THE major problems concerning aircraft tyre design are the high ground speeds involved, very high braking torques which have to be transmitted, high temperatures which can be…

Abstract

THE major problems concerning aircraft tyre design are the high ground speeds involved, very high braking torques which have to be transmitted, high temperatures which can be generated in the brakes and transferred to the tyres, as well as the stringent weight and space limitations imposed. These problems have all been magnified many times through the years with the great increases of aircraft speed and weight: modern jet airliners having ground speeds of up to 250 m.p.h.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 1
Type: Research Article
ISSN: 0002-2667

1 – 10 of 106