Search results

1 – 10 of 54
Article
Publication date: 13 December 2022

Affaf Asghar Butt, Sayyid Salman Rizavi, Mian Sajid Nazir and Aamer Shahzad

This study aims to examine the effect of corporate derivatives use on firm value and how the corporate governance index modifies this relationship.

Abstract

Purpose

This study aims to examine the effect of corporate derivatives use on firm value and how the corporate governance index modifies this relationship.

Design/methodology/approach

The sample consists of 219 nonfinancial firms on the Pakistan Stock Exchange (PSX) from 2011 to 2019. The study used ordinary least square regression with year and industry dummies for estimations. Multiple estimation models such as fixed/random effect, Fama–MacBeth and two-stage least squares (2SLS) are used for robustness. Finally, the PROCESS macro tool is used to estimate the effect of moderating the role of corporate governance (CG) as robustness.

Findings

The findings show that derivatives use has an inverse influence on firm value. The firms did not use derivatives as a risk management tool but for speculation motives. However, the corporate governance index significantly weakens this relationship. However, strong governance forces the managers to use derivatives for hedging purposes. The firm-specific factors, including size, age, leverage, cash, financial distress cost, dividend and growth opportunities, also significantly influence firm value. The findings are robust to the other estimation models.

Research limitations/implications

The findings indicate that emerging economies like Pakistan are more prone to agency problems. The strong corporate governance structure helps firms turn the speculative motive of derivatives use into hedging purposes and mitigate the agency issues.

Practical implications

This empirical evidence suggests that good governance structures can help improve the impact of derivative usage on firm value.

Originality/value

To the best of the author's knowledge, this is the first study that examines the conditional role of corporate governance on the derivatives–value relationship from the viewpoint of agency problem/speculative motive.

Details

South Asian Journal of Business Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-628X

Keywords

Article
Publication date: 9 April 2024

My-Linh Thi Nguyen and Tuan Huu Nguyen

This study examines the evidence of the impact of climate change on the financial performance of basic materials companies in Vietnam.

Abstract

Purpose

This study examines the evidence of the impact of climate change on the financial performance of basic materials companies in Vietnam.

Design/methodology/approach

The research sample includes eighty-two basic materials companies listed on the Vietnamese stock market from 2003 to 2022. This study used one-way and two-way fixed-effects feasible generalized least squares (FGLS) estimation methods.

Findings

Climate change, measured through variables including changes in temperature, average rainfall, greenhouse gas emissions and rising sea levels, has a negative impact on the financial performance of companies in this industry. The study also found that, with rising temperatures, the financial performance of steel manufacturing companies decreased less than that of coal mining and forestry companies, but increasing greenhouse gases and rising sea levels reduced the financial performance of steel companies. We did not find evidence of any difference in the impact of climate change on the financial performance of basic materials companies before and after the UN Climate Change Conference (COP 21). This is a new finding, which is consistent with empirical studies in Vietnam and different from previous studies in that it provides new evidence on the impact of climate change on the financial performance of basic materials companies in the Vietnamese market and cross-checks the impact of climate change by sector and over time.

Originality/value

To the best of our knowledge, this is one of the first articles on climate change and the financial performance of basic materials companies.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 28 March 2024

Anna Young-Ferris, Arunima Malik, Victoria Calderbank and Jubin Jacob-John

Avoided emissions refer to greenhouse gas emission reductions that are a result of using a product or are emission removals due to a decision or an action. Although there is no…

Abstract

Purpose

Avoided emissions refer to greenhouse gas emission reductions that are a result of using a product or are emission removals due to a decision or an action. Although there is no uniform standard for calculating avoided emissions, market actors have started referring to avoided emissions as “Scope 4” emissions. By default, making a claim about Scope 4 emissions gives an appearance that this Scope of emissions is a natural extension of the existing and accepted Scope-based emissions accounting framework. The purpose of this study is to explore the implications of this assumed legitimacy.

Design/methodology/approach

Via a desktop review and interviews, we analyse extant Scope 4 company reporting, associated accounting methodologies and the practical implications of Scope 4 claims.

Findings

Upon examination of Scope 4 emissions and their relationship with Scopes 1, 2 and 3 emissions, we highlight a dynamic and interdependent relationship between quantification, commensuration and standardization in emissions accounting. We find that extant Scope 4 assessments do not fit the established framework for Scope-based emissions accounting. In line with literature on the territorializing nature of accounting, we call for caution about Scope 4 claims that are a distraction from the critical work of reducing absolute emissions.

Originality/value

We examine the implications of assumed alignment and borrowed legitimacy of Scope 4 with Scope-based accounting because Scope 4 is not an actual Scope, but a claim to a Scope. This is as an act of accounting territorialization.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 21 September 2023

Tanakorn Likitapiwat, Pornsit Jiraporn and Sirimon Treepongkaruna

The authors investigate whether firm-specific vulnerability to climate change influences foreign exchange hedging, using a novel text-based measure of firm-level climate change…

Abstract

Purpose

The authors investigate whether firm-specific vulnerability to climate change influences foreign exchange hedging, using a novel text-based measure of firm-level climate change exposure generated by state-of-the-art machine-learning algorithms.

Design/methodology/approach

The authors' empirical analysis includes firm-fixed effects, random-effects regressions, propensity score matching (PSM), entropy balancing, an instrumental-variable analysis and using an exogenous shock as a quasi-natural experiment.

Findings

The authors' findings suggest that greater climate change exposure brings about a significant reduction in exchange rate hedging. Companies more exposed to climate change may invest significant resources to address climate change risk, such that they have fewer resources available for currency risk management. Additionally, firms seriously coping with climate change risk may view exchange rate risk as relatively less important in comparison to the risk posed by climate change. Notably, the authors also find that the negative effect of climate change exposure on currency hedging can be specifically attributed to the regulatory aspect of climate change risk rather than the physical dimension, suggesting that companies view the regulatory dimension of climate change as more critical.

Originality/value

Recent studies have demonstrated that climatic fluctuations represent one of the most recent sources of unpredictability, thereby impacting the economy and financial markets (Barnett et al., 2020; Bolton and Kacperczyk, 2020; Engle et al., 2020). The authors' study advances this field of research by revealing that company-specific exposure to climate change serves as a significant determinant of corporate currency hedging, thus expanding the existing knowledge base.

Details

Journal of Accounting Literature, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-4607

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 13 August 2020

Mariam AlKandari and Imtiaz Ahmad

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate…

10533

Abstract

Solar power forecasting will have a significant impact on the future of large-scale renewable energy plants. Predicting photovoltaic power generation depends heavily on climate conditions, which fluctuate over time. In this research, we propose a hybrid model that combines machine-learning methods with Theta statistical method for more accurate prediction of future solar power generation from renewable energy plants. The machine learning models include long short-term memory (LSTM), gate recurrent unit (GRU), AutoEncoder LSTM (Auto-LSTM) and a newly proposed Auto-GRU. To enhance the accuracy of the proposed Machine learning and Statistical Hybrid Model (MLSHM), we employ two diversity techniques, i.e. structural diversity and data diversity. To combine the prediction of the ensemble members in the proposed MLSHM, we exploit four combining methods: simple averaging approach, weighted averaging using linear approach and using non-linear approach, and combination through variance using inverse approach. The proposed MLSHM scheme was validated on two real-time series datasets, that sre Shagaya in Kuwait and Cocoa in the USA. The experiments show that the proposed MLSHM, using all the combination methods, achieved higher accuracy compared to the prediction of the traditional individual models. Results demonstrate that a hybrid model combining machine-learning methods with statistical method outperformed a hybrid model that only combines machine-learning models without statistical method.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Article
Publication date: 15 January 2024

Shalini Velappan

This study aims to investigate the co-volatility patterns between cryptocurrencies and conventional asset classes across global markets, encompassing 26 global indices ranging…

Abstract

Purpose

This study aims to investigate the co-volatility patterns between cryptocurrencies and conventional asset classes across global markets, encompassing 26 global indices ranging from equities, commodities, real estate, currencies and bonds.

Design/methodology/approach

It used a multivariate factor stochastic volatility model to capture the dynamic changes in covariance and volatility correlation, thus offering empirical insights into the co-volatility dynamics. Unlike conventional research on price or return transmission, this study directly models the time-varying covariance and volatility correlation.

Findings

The study uncovers pronounced co-volatility movements between cryptocurrencies and specific indices such as GSCI Energy, GSCI Commodity, Dow Jones 1 month forward and U.S. 10-year TIPS. Notably, these movements surpass those observed with precious metals, industrial metals and global equity indices across various regions. Interestingly, except for Japan, equity indices in the USA, Canada, Australia, France, Germany, India and China exhibit a co-volatility movement. These findings challenge the existing literature on cryptocurrencies and provide intriguing evidence regarding their co-volatility dynamics.

Originality

This study significantly contributes to applying asset pricing models in cryptocurrency markets by explicitly addressing price and volatility dynamics aspects. Using the stochastic volatility model, the research adding methodological contribution effectively captures cryptocurrency volatility's inherent fluctuations and time-varying nature. While previous literature has primarily focused on bitcoin and a few other cryptocurrencies, this study examines the stochastic volatility properties of a wide range of cryptocurrency indices. Furthermore, the study expands its scope by examining global asset markets, allowing for a comprehensive analysis considering the broader context in which cryptocurrencies operate. It bridges the gap between traditional asset pricing models and the unique characteristics of cryptocurrencies.

Details

Studies in Economics and Finance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1086-7376

Keywords

Article
Publication date: 21 December 2023

Majid Rahi, Ali Ebrahimnejad and Homayun Motameni

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is…

Abstract

Purpose

Taking into consideration the current human need for agricultural produce such as rice that requires water for growth, the optimal consumption of this valuable liquid is important. Unfortunately, the traditional use of water by humans for agricultural purposes contradicts the concept of optimal consumption. Therefore, designing and implementing a mechanized irrigation system is of the highest importance. This system includes hardware equipment such as liquid altimeter sensors, valves and pumps which have a failure phenomenon as an integral part, causing faults in the system. Naturally, these faults occur at probable time intervals, and the probability function with exponential distribution is used to simulate this interval. Thus, before the implementation of such high-cost systems, its evaluation is essential during the design phase.

Design/methodology/approach

The proposed approach included two main steps: offline and online. The offline phase included the simulation of the studied system (i.e. the irrigation system of paddy fields) and the acquisition of a data set for training machine learning algorithms such as decision trees to detect, locate (classification) and evaluate faults. In the online phase, C5.0 decision trees trained in the offline phase were used on a stream of data generated by the system.

Findings

The proposed approach is a comprehensive online component-oriented method, which is a combination of supervised machine learning methods to investigate system faults. Each of these methods is considered a component determined by the dimensions and complexity of the case study (to discover, classify and evaluate fault tolerance). These components are placed together in the form of a process framework so that the appropriate method for each component is obtained based on comparison with other machine learning methods. As a result, depending on the conditions under study, the most efficient method is selected in the components. Before the system implementation phase, its reliability is checked by evaluating the predicted faults (in the system design phase). Therefore, this approach avoids the construction of a high-risk system. Compared to existing methods, the proposed approach is more comprehensive and has greater flexibility.

Research limitations/implications

By expanding the dimensions of the problem, the model verification space grows exponentially using automata.

Originality/value

Unlike the existing methods that only examine one or two aspects of fault analysis such as fault detection, classification and fault-tolerance evaluation, this paper proposes a comprehensive process-oriented approach that investigates all three aspects of fault analysis concurrently.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 January 2024

Caroline Silva Araújo, Emerson de Andrade Marques Ferreira and Dayana Bastos Costa

Tracking physical resources at the construction site can generate information to support effective decision-making and building production control. However, the methods for…

Abstract

Purpose

Tracking physical resources at the construction site can generate information to support effective decision-making and building production control. However, the methods for conventional tracking usually offer low reliability. This study aims to propose the integrated Smart Twins 4.0 to track and manage metallic formworks used in cast-in-place concrete wall systems using internet of things (IoT) (operationalized by radio frequency identification [RFID]) and building information modeling (BIM), focusing on increasing quality and productivity.

Design/methodology/approach

Design science research is the research approach, including an exploratory study to map the constructive system, the integrated system development, an on-site pilot implementation in a residential project and a performance evaluation based on acquired data and the perception of the project’s production team.

Findings

In all rounds of requests, Smart Twins 4.0 registered and presented the status from the formworks and the work progress of buildings in complete correspondence with the physical progress providing information to support decision-making during operation. Moreover, analyses of the system infrastructure and implementation details can drive researchers regarding future IoT and BIM implementation in real construction sites.

Originality/value

The primary contribution is the system proposal, centralized into a mobile app that contains a Web-based virtual model to receive data in real time during construction phases and solve a real problem. The paper describes Smart Twins 4.0 development and its requirements for tracking physical resources considering theoretical and practical previous research regarding RFID, IoT and BIM.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 12 March 2024

Dhobale Yash and R. Rajesh

The study aims to identify the possible risk factors for electricity grids operational disruptions and to determine the most critical and influential risk indicators.

39

Abstract

Purpose

The study aims to identify the possible risk factors for electricity grids operational disruptions and to determine the most critical and influential risk indicators.

Design/methodology/approach

A multi-criteria decision-making best-worst method (BWM) is employed to quantitatively identify the most critical risk factors. The grey causal modeling (GCM) technique is employed to identify the causal and consequence factors and to effectively quantify them. The data used in this study consisted of two types – quantitative periodical data of critical factors taken from their respective government departments (e.g. Indian Meteorological Department, The Central Water Commission etc.) and the expert responses collected from professionals working in the Indian electric power sector.

Findings

The results of analysis for a case application in the Indian context shows that temperature dominates as the critical risk factor for electrical power grids, followed by humidity and crop production.

Research limitations/implications

The study helps to understand the contribution of factors in electricity grids operational disruptions. Considering the cause consequences from the GCM causal analysis, rainfall, temperature and dam water levels are identified as the causal factors, while the crop production, stock prices, commodity prices are classified as the consequence factors. In practice, these causal factors can be controlled to reduce the overall effects.

Practical implications

From the results of the analysis, managers can use these outputs and compare the risk factors in electrical power grids for prioritization and subsequent considerations. It can assist the managers in efficient allocation of funds and manpower for building safeguards and creating risk management protocols based on the severity of the critical factor.

Originality/value

The research comprehensively analyses the risk factors of electrical power grids in India. Moreover, the study apprehends the cause-consequence pair of factors, which are having the maximum effect. Previous studies have been focused on identification of risk factors and preliminary analysis of their criticality using autoregression. This research paper takes it forward by using decision-making methods and causal analysis of the risk factors with blend of quantitative and expert response based data analysis to focus on the determination of the criticality of the risk factors for the Indian electric power grid.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Access

Year

All dates (54)

Content type

Earlycite article (54)
1 – 10 of 54