Search results

1 – 10 of 545
Article
Publication date: 10 June 2022

Minjuan Zhang, Ning Jing, Zhen Liu, Chunyang Li and Ning Zhang

An interferogram is produced by modulating the difference between the extraordinary refractive index and the ordinary refractive index for photoelastic crystals in…

Abstract

Purpose

An interferogram is produced by modulating the difference between the extraordinary refractive index and the ordinary refractive index for photoelastic crystals in photoelastic-modulated Fourier transform spectrometers (PEM-FTs). Due to the influence of the refractive index dispersion characteristics on the maximum optical path difference of the interferogram, it is necessary to study wavelength calibration methods.

Design/methodology/approach

A wavelength calibration method for PEM-FTs was proposed based on the modulation principle of the photoelastic-modulated interferometer and the relationship between the maximum optical path difference and the refractive index difference. A 632.8 nm narrow-pulse laser was used as a reference source to measure the maximum optical path difference () of the interferogram, and the parameter was used to calculate the discrete frequency points in the frequency domain. To account for the influence of refractive index dispersion on the maximum optical path difference, the refractive index curve for the photoelastic crystal was used to adjust the discrete frequency coordinates.

Findings

The error in the reconstructed spectral frequency coordinates clearly decreased. The maximum relative error was 2.5%. A good solar absorption spectrum was obtained with a PEM-FT experimental platform and the wavelength calibration method.

Originality/value

The interferogram is produced by adjusting the difference between extraordinary refractive index and ordinary refractive index for the photoelastic crystal in the PEM-FTs. Given the wavelength dependence on the refractive indices, in view of the modulation principle of the photoelastic modulated interferometer, the relationship between the maximum optical path difference and the refractive index difference, the variation law of the refractive index of the photoelastic crystal and the process of spectral reconstruction is presented in this paper.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 June 2013

Ahmad Fairuz Omar

Visible and near infrared spectroscopy have been applied widely in fruits quality assessment especially on the measurement of soluble solids content (SSC) measured in oBrix and…

Abstract

Purpose

Visible and near infrared spectroscopy have been applied widely in fruits quality assessment especially on the measurement of soluble solids content (SSC) measured in oBrix and acidity measured in pH. Spectroscopy technique has been applied on three botanically different categories of fruits, that is: imported Californian table grape, Mandarin lime and star fruit. The purpose is to examine the ability of spectroscopy technique to quantify internal quality parameters with very narrow variability due to the characteristics of the raw material analyzed. This work also presents comparative study on peak wavelengths that can best be used to calibrate SSC and pH of different types of fruits.

Design/methodology/approach

The effective wavelengths chosen for calibration development are compared with those selected by other researchers in similar experiments. NIR wavelengths 910 nm (C−H band) and 950 nm (O−H band) are the most important wavelengths for the prediction of SSC for all examined fruits while wavelengths 922‐923 nm and 990‐995 nm for pH. Visible wavelength 605, 675 and 654 nm can efficiently improve the SSC and pH prediction for grape, lime and star fruit, respectively.

Findings

The best prediction for SSC has been achieved with R2=0.953 and RMSE=0.182 for grape, R2=0.918 and RMSE=0.109 for lime and R2=0.957 and RMSE=0.354 for star fruit. The best prediction for pH has been achieved with R2=0.763 and RMSE=0.110 for grape, R2=0.841 and RMSE=0.073 for lime and R2=0.862 and RMSE=0.261 for star fruit.

Originality/value

Currently, the spectroscopy research conducted for the measurement of fruits qualities is conducted through wide range spectrometer. However, the peak responses are only located at specific wavelengths. Hence, the selection of wavelengths related to SSC and pH will allow the design of low cost instruments for the prediction of these internal quality parameters.

Details

Sensor Review, vol. 33 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 March 2017

Wei Wei, Jun Chang, Qingjie Huang, Qiang Wang, Yuanyuan Liu and Zengguang Qin

As measurement results of optical gas sensors are constantly affected by the pressure of a target gas, approaches must be taken to modify the results. The purpose of this paper is…

Abstract

Purpose

As measurement results of optical gas sensors are constantly affected by the pressure of a target gas, approaches must be taken to modify the results. The purpose of this paper is to compare the traditional measurement method with the new measurement system. At the same time, measurement results of the two systems under different pressures are presented for comparison of the detection performance.

Design/methodology/approach

A theoretical model of line shape function and its impact on the measured results is presented, which is based on direct absorption and wavelength modulation spectroscopy (WMS) for gas concentration detection under different pressures. Methods of linear fitting and result modification have been illustrated and compared. A new testing system with the result modification method used for water vapor concentration detection under different pressures between 1 and 7 atm is applied. With an additional pressure sensor placed in the gas cell and calibration performed, relationships between the amplitude of the second harmonic and concentration of the target gas under different pressures can be obtained.

Findings

Amplitude detection can be used for concentration detection regardless of the change in pressure for the method of direct absorption. Although, WMS with second harmonic detection is not enough. Two methods are presented and compared with WMS under different pressures. Moreover, the result modification method shows better performance as computation is significantly reduced.

Originality/value

The comparison between linear fitting and the result modification method with WMS under different pressures is firstly presented. At the same time, a new testing system with better performance for water vapor concentration detection under different pressures is presented as well.

Details

Sensor Review, vol. 37 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 18 September 2007

85

Abstract

Details

Sensor Review, vol. 27 no. 4
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 15 March 2019

Guangkai Sun, Yang Hu, Mingli Dong, Yanlin He, Mingxin Yu and Lianqing Zhu

Soft robotics is a burgeoning field owing to its high adaptability and safety in human–machine interaction and unstructured environments. However, the feedback control of soft…

Abstract

Purpose

Soft robotics is a burgeoning field owing to its high adaptability and safety in human–machine interaction and unstructured environments. However, the feedback control of soft actuators with flexible sensors is still a challenge.

Design/methodology/approach

To address this issue, this study proposes an optical fibre-based sensing membrane for the posture measurement of soft pneumatic bending actuators. The major contribution is the development of a flexible sensing membrane with a high sensitivity and repeatability for the feedback control of soft actuators. The characteristics of sensing membrane were analysed. The relationship between wavelength shift and bending curvature was derived. The curvatures of soft actuator were measured at four bending status, and the postures were reconstructed.

Findings

The results indicate that the measurement error is less than 2.1% of the actual bending curvature. The sensitivity is up to 212.8 pm/m−1, and the signal fluctuation in repeated measurements is negligible. This approach has broad application prospects in soft robotics, because it makes the optical fibre achieve more strength and compatible with soft actuators, thus improving the sensing accuracy, sensitivity and reliability of fibre sensors.

Originality/value

Different from previous approaches, an optical fibre with FBGs is embedded into a multilayered polyimide film to form a flexible sensing membrane, and the membrane is embedded into a soft pneumatic bending actuator as the smart strain limited layer which is able to measure the posture in real time. This approach makes the optical fibre stronger and compatible with the soft pneumatic bending actuator, and the sensing accuracy, sensitivity and reliability are improved. The proposed sensing configuration is effective for the feedback control of the soft pneumatic bending actuators.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 February 2021

Yongxing Guo, Min Chen, Li Xiong, Xinglin Zhou and Cong Li

The purpose of this study is to present the state of the art for fiber Bragg grating (FBG) acceleration sensing technologies from two aspects: the principle of the measurement…

Abstract

Purpose

The purpose of this study is to present the state of the art for fiber Bragg grating (FBG) acceleration sensing technologies from two aspects: the principle of the measurement dimension and the principle of the sensing configuration. Some commercial sensors have also been introduced and future work in this field has also been discussed. This paper could provide an important reference for the research community.

Design/methodology/approach

This review is to present the state of the art for FBG acceleration sensing technologies from two aspects: the principle of the measurement dimension (one-dimension and multi-dimension) and the principle of the sensing configuration (beam type, radial vibration type, axial vibration type and other composite structures).

Findings

The current research on developing FBG acceleration sensors is mainly focused on the sensing method, the construction and design of the elastic structure and the design of a new information detection method. This paper hypothesizes that in the future, the following research trends will be strengthened: common single-mode fiber grating of the low cost and high utilization rate; high sensitivity and strength special fiber grating; multi-core fiber grating for measuring single-parameter multi-dimensional information or multi-parameter information; demodulating equipment of low cost, small volume and high sampling frequency.

Originality/value

The principle of the measurement dimension and principle of the sensing configuration for FBG acceleration sensors have been introduced, which could provide an important reference for the research community.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 July 2022

Rehab El-Gamal, Khaled El-Nagar, Nagwa A. Tharwat and Gomaa Abdel-Maksoud

This study aims to use whiteness (WI) and yellowness indices (YI) that were calculated from the International Commission on Illumination (CIE) color parameter to evaluate the…

Abstract

Purpose

This study aims to use whiteness (WI) and yellowness indices (YI) that were calculated from the International Commission on Illumination (CIE) color parameter to evaluate the efficiency of some triazole fungicides [propiconazole (C15H17Cl2N3O2) and tebuconazole (C16H22ClN3O)] to protect wooden artifacts from fungal deterioration.

Design/methodology/approach

Archeological wooden samples were collected from some historical Islamic buildings in Cairo, Egypt. Three species of fungi were identified in previous work. Propiconazole and tebuconazole with different concentrations treated the infected wooden samples aged for different periods. WI and YI of studied samples were measured using UV spectrophotometer. Calibration and uncertainty estimation accompanied by color measurement were studied.

Findings

Studying the uncertainty sources of diffuse reflection of the standard white tiles revealed that the uncertainty of calibration for both the spectrophotometer and white tiles had the highest contribution. The treated samples with tebuconazole and propiconazole fungicides gave good resistance against fungal deterioration at 0.50% for WI and YI.

Originality/value

This study presents the importance of colorimetry in the conservation field because they are considered one of the most important criteria to evaluate conservation materials. From color measurements and their uncertainties, it became clear that triazole fungicides have good efficiency in the protection of wooden artifacts from fungal deterioration. The value of this study is that propiconazole and tebuconazole fungicides at 0.50% can be applied to archaeological wood that is endangered to improper conditions, especially in the case of high levels of relative humidity.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 March 2015

Robert Bogue

– This paper aims to provide details of the major optical gas sensing techniques and their applications.

3420

Abstract

Purpose

This paper aims to provide details of the major optical gas sensing techniques and their applications.

Design/methodology/approach

Following an introduction, this paper first identifies the major gas sensing technologies and provides an overview of optical sensing techniques. The sources and impact of the gases most frequently sensed by optical methods are listed. Three non-absorption-based and nine absorption-based methods and their main applications are then described in detail. Brief concluding comments are drawn.

Findings

All manner of optical gas sensing techniques have been commercialised and while the majority are absorption-based, several other methods also play a significant role. Some optical gas sensors offer advanced capabilities such as remote monitoring, the creation of 2D and 3D distribution maps, detection of parts per trillion levels and even the visualisation of gases in real time. They play a vital role in protecting workers from hazardous gases, controlling and minimising air pollution and monitoring the atmospheric environment, as well as being used in the food, medical, process, power generation and other industries.

Originality/value

This paper provides a detailed insight into optical gas sensing techniques and their uses.

Details

Sensor Review, vol. 35 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 1973

U.S. National Bureau of Standards

A spectrophotometer that has achieved new levels of precision and accuracy, and is expected to have a significant impact on spectrophotometry both as a model for improved…

Abstract

A spectrophotometer that has achieved new levels of precision and accuracy, and is expected to have a significant impact on spectrophotometry both as a model for improved instruments and through the improvement of standard calibration filters, has been designed and constructed at the National Bureau of Standards, Institute for Basic Standards, U.S. Department of Commerce.

Details

Pigment & Resin Technology, vol. 2 no. 1
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 June 1988

Fischer Instrumentation (GB) Ltd., of Lymington/Hampshire are now introducing what is believed to be a completely new design concept for micro‐hardness measurement. The…

Abstract

Fischer Instrumentation (GB) Ltd., of Lymington/Hampshire are now introducing what is believed to be a completely new design concept for micro‐hardness measurement. The Fischerscope H‐100 will not only measure hardness in layers down to a few micro‐metres but will also measure creep and elasticity.

Details

Pigment & Resin Technology, vol. 17 no. 6
Type: Research Article
ISSN: 0369-9420

1 – 10 of 545