Search results

1 – 10 of 409
Article
Publication date: 1 April 2022

Hanieh Shaki

In this study, polyvinyl alcohol (PVA)/poly[acrylic acid (AAc)-co-acrylamide (AM)] composite hydrogel was prepared by radical copolymerization in the presence of Fe3+

Abstract

Purpose

In this study, polyvinyl alcohol (PVA)/poly[acrylic acid (AAc)-co-acrylamide (AM)] composite hydrogel was prepared by radical copolymerization in the presence of Fe3+ freezing-thawing method. The swelling behavior of the hydrogel was investigated. The novel synthesized hydrogel was used as an adsorbent for the removal of dyes from aqueous solutions. In this paper, methylene blue and maxilon blue 5G were selected as representative cationic dyes. In addition, adsorption isotherm models were used to describe the dye adsorption process.

Design/methodology/approach

The prepared composite hydrogel was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy and UV–visible.

Findings

The prepared hydrogel exhibited excellent adsorption ability for both dyes. Various experimental conditions affecting the dye adsorption were explored to achieve maximum removal of both dyes. In addition, adsorption isotherm models were used to describe the dye adsorption process.

Originality/value

To the best of the author’s knowledge, synthesis of PVA/poly(AAc-co-AM) composite hydrogel in the presence of Fe3+ and investigation of the removal of methylene blue and maxilon blue 5G dyes is done for the first time successfully.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 March 2022

Veeramani Rajasekar, Paramasivan Karthickumar, Ashokkumar Hozen Richhie Rose, Nagarajan Manimmehalai and Dharmaraj Subhasri

The purpose of this study was carried out to explore the potential use of carrageenan extracted from marine red seaweed (Kappaphycus alvarezii) collected from Munaikadu, Mandapam…

Abstract

Purpose

The purpose of this study was carried out to explore the potential use of carrageenan extracted from marine red seaweed (Kappaphycus alvarezii) collected from Munaikadu, Mandapam region, Ramanathapuram district, Tamil Nadu.

Design/methodology/approach

Biodegradable film was developed by using carrageenan extracted by using alcohol extraction method. To improve the mechanical properties of the film, rice starch was incorporated. The biodegradable films were made by phase inversion method with varied carrageenan concentration of 1%, 1.5% and 2% (w/v) and rice starch with concentration of 0%, 1%, 1.5% and 2% (w/v). Physical properties, optical properties, mechanical properties and other properties such as biodegradability, solubility and water vapor permeability of the developed biodegradable films were characterized. The results were analyzed in design expert software using Box–Behnken design.

Findings

Results show that the biodegradable film’s mechanical and water vapor permeability increases with an increase in carrageenan and rice starch concentration. The optimized film structure was obtained with carrageenan and rice starch composition of 1.5% and 2%, respectively.

Originality/value

The results shown a broad spectrum of commercial applications and future rice starch possibilities incorporated in the carrageenan-based biodegradable film.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 October 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Kylyn A. Morales, Dalisa Mars L. Revilleza, Laurence V. Catindig and Marish S. Madlangbayan

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete…

Abstract

Purpose

Using coconut shell aggregates (CSA) in concrete benefits agricultural waste management and reduces the demand for mineral resources. Several studies have found that concrete containing CSA can achieve strengths that are comparable to regular concrete. The purpose of the present work is to evaluate the concrete’s durability-related properties to supplement these earlier findings.

Design/methodology/approach

Cylindrical specimens were prepared with a constant water–cement ratio of 0.50 and CSA content ranging from 0% to 50% (at 10% increment) by volume of the total coarse aggregates. The specimens were cured for 28 days and then tested for density, surface hardness, electrical resistivity and water sorptivity. The surface hardness was measured to describe the concrete resistance to surface wearing, while the resistivity and sorptivity were evaluated to describe the material’s resistance to fluid penetration.

Findings

The results showed that the surface hardness of concrete remained on average at 325 Leeb and did not change significantly with CSA addition. The distribution of surface hardness was also similar across all CSA groups, with the interquartile range averaging 59 Leeb. These results suggest that the cement paste and gravel stiffness had a more pronounced influence on the surface hardness than CSA. On the other hand, concrete became lighter by about 9%, had lower resistivity by 80% and had significantly higher initial sorptivity by up to 110%, when 50% of its natural gravel was replaced with CSA. Future work may be done to improve the durability of CSA when used as coarse aggregate.

Originality/value

The present study is the first to show the lack of correlation between CSA content and surface hardness. It would mean that the surface hardness test may not completely capture the porous nature of CSA-added concrete. The paper concludes that without additional treatment prior to mixing, CSA may be limited only to applications where concrete is not in constant contact with water or deleterious substances.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2023

Liangbin Chen, Lihong Zhao and Keren Ding

This paper aims to improve the permeability and antifouling of polysulfone (PSF) ultrafiltration membranes, the PSF matrix was modified by incorporating sulfonated polysulfone…

Abstract

Purpose

This paper aims to improve the permeability and antifouling of polysulfone (PSF) ultrafiltration membranes, the PSF matrix was modified by incorporating sulfonated polysulfone (SPSF).

Design/methodology/approach

Systematic investigations were conducted on the synergistic effects of a pore-forming agent, coagulation bath temperature and SPSF doping in the casting solution on blended ultrafiltration membranes. The chemical composition of the membranes was analyzed using Fourier transform infrared spectroscopy. The morphology and surface roughness of the membranes were characterized using scanning electron microscopy and atomic force microscopy. The hydrophilicity of the membrane surface was analyzed using a contact angle meter. The permeability and antifouling properties of the blended membranes were also investigated through filtration experiments.

Findings

The results indicated that the blended ultrafiltration membranes demonstrated an optimal overall performance when PVP-K30 content was 5.0 Wt.%, coagulation bath temperature was 30°C and SPSF content was 2.4 Wt.%. In comparison to a pure PSF ultrafiltration membrane, there was a significant increase in pure water flux (390.7 L·m−2·h−1) by 2.2 times, while bovine serum albumin retention slightly decreased to 93.8%. In addition, the flux recovery rate improved by 2.1 times (71.4%) compared to that of the original PSF ultrafiltration membrane.

Practical implications

The method provided a simple and practical solution for improving the antifouling and permeability of PSF ultrafiltration membranes.

Originality/value

SPSF was anticipated to serve as an excellent modification additive for the preparation of ultrafiltration membranes with superior properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 April 2023

Emel Ken D. Benito, Ariel Miguel M. Aragoncillo, Francis Augustus A. Pascua, Jules M. Juanites, Maricel A. Eneria, Richelle G. Zafra and Marish S. Madlangbayan

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper…

Abstract

Purpose

The durability of concrete containing recycled aggregates, sourced from concrete specimens that have been tested in laboratory testing facilities, remains understudied. This paper aims to present the results of experiments investigating the effect of incorporating such type of concrete waste on the strength and durability-related properties of concrete.

Design/methodology/approach

A total of 77 concrete cylinders sized Ø100 × 200 mm with varying amount of recycled concrete aggregate (RCA) (0%–100% by volume, at 25% increments) and maximum aggregate size (12.5, 19.0 and 25.0 mm) were fabricated and tested for slump, compressive strength, sorptivity and electrical resistivity. Disk-shaped specimens, 50-mm thick, were cut from the original cylinders for sorptivity and resistivity tests. Analysis of variance and post hoc test were conducted to detect statistical variability among the data.

Findings

Compared to regular concrete, a reduction of slump (by 18.6%), strength (15.1%), secondary sorptivity (31.5%) and resistivity (17.0%) were observed from concrete containing 100% RCA. Statistical analyses indicate that these differences are significant. In general, an aggregate size of 19 mm was found to produce the optimum value of slump, compressive strength and sorptivity in regular and RCA-added concrete.

Originality/value

The results of this study suggest that comparable properties of normal concrete were still achieved by replacing 25% of coarse aggregate volume with 19-mm RCA, which was processed from laboratory-tested concrete samples. Therefore, such material can be considered as a potential and sustainable alternative to crushed gravel for use in light or nonstructural concrete construction.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 27 June 2023

Edi Wiraguna

This study aims to identify the location of the micropyle, the role of the micropyle in seed germination and the association between the micropyle size and seed weight of grass…

Abstract

Purpose

This study aims to identify the location of the micropyle, the role of the micropyle in seed germination and the association between the micropyle size and seed weight of grass peas.

Design/methodology/approach

First, the micropyle was identified by cutting the seed in half and observing the seeds under the electron microscope. Second, the micropyle was covered by lanolin to block water imbibition. The rate of imbibition and germination was then observed. Lastly, micropyle sizes of various grass pea genotypes were identified by capturing seed images under a light microscope and converting the sizes to mm2 using computer software (ImageJ).

Findings

The location of micropyle was located nearby the hilum, similar to soybean seeds. Seed imbibition was significantly lower in lanolin application (<87%) than in the control (>124%) after 24 hours of submergence. Germination was a day delay for lanolin application on the micropyle compared to lanolin application on the non-micropyle. The germination delay resulted in a significantly lower germination percentage at <57% on the micropyle lanolin application than at >79% on the non-micropyle lanolin application after 10 days of sowing. There is no correlation between the micropyle size and seed weight.

Originality/value

These findings add information on the location and the role of the micropyle for grass pea seed germination.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 4 January 2024

Prabhjot Kaur, Rajveer Kaur Ritu and Amanpreet Kaur

The present study identifies the factors that impact behavioral intentions to adopt solar water heaters (SWHs) and examines their relationship with behavioral intentions using an…

Abstract

Purpose

The present study identifies the factors that impact behavioral intentions to adopt solar water heaters (SWHs) and examines their relationship with behavioral intentions using an extended “Unified Theory of Acceptance and Use of Technology” (UTAUT) model.

Design/methodology/approach

The study used a primary survey to collect data from 423 respondents across seven Indian states selected through purposive sampling. The collected data was analyzed using IBM SPSS software and “Structural Equation Modeling” (SEM) was performed using SmartPLS 3.5.5.

Findings

The results suggest that social influence is the most significant factor affecting SWH adoption, followed by effort, performance expectancy and facilitating conditions. The perceived cost negatively affects behavioral intentions and social influence on behavioral intentions is partially mediated by facilitating conditions. People prefer SWHs if they are easy to install and compatible with other home appliances. Positive perception of friends and family, easy access and government incentives contribute to SWH adoption.

Practical implications

SWH adoption can be promoted by designing sector-specific programs and improving ease of installation, operation, maintenance and after-sale services.

Originality/value

This study explores the behavioral intentions of individuals in India to adopt SWHs. India is a developing tropical country with a high potential for SWH adoption but has not received much attention. Further, the research integrates the perceived cost construct in the UTAUT model and examines the partial mediation impact of facilitating conditions to improve the model’s comprehensibility.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 18 April 2023

Wanbin Chen, Mingyu Wang, Mingyu Li, Kaiqiang Li, Yi Huang and Yunze Xu

The purpose of this paper is to study the interaction of main marine organisms on localized corrosion of 316L stainless steel in the Dalian Sea area.

Abstract

Purpose

The purpose of this paper is to study the interaction of main marine organisms on localized corrosion of 316L stainless steel in the Dalian Sea area.

Design/methodology/approach

The steel plate was immersed in the Dalian Sea area for nine months to observe the biofouling and localized corrosion. The local potential distribution on the steel plate covered by marine organisms was measured. The local electrochemical measurements were performed to facilitate understanding the interfacial status under different biofouling conditions. The local surface morphologies and corrosion products were characterized.

Findings

The localized corrosion of stainless steel is mainly induced by the attachment of barnacles on the steel. The mussels have no influence on the localized corrosion. The cover of sea squirts could mitigate the localized corrosion induced by barnacles. Both crevice corrosion and pitting corrosion were found beneath the barnacle without the covering of sea squirts. The pitting damage was more serious than the crevice corrosion in the Dalian Sea area. The probing of sulfur element indicates that the potential growth of sulfate-reducing bacteria at barnacle center.

Originality/value

The above findings revealed that the interaction of marine organisms has significant influences on the localized corrosion of stainless steel. The influences of macro-fouling and micro-fouling on localized corrosion are discussed.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 June 2023

Huiyi Xu, Zhiming Gao, Yang Yang and Wenbin Hu

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Abstract

Purpose

The purpose of this study is to ensure the safe use of carbon fiber composite pressure vessels in the nuclear industry environment.

Design/methodology/approach

This study investigated the degradation behaviors of carbon fiber reinforced composite (CFRP) using the specific corrosive media HF solution, with a focus on the damage to the surface epoxy layer. The degradation behaviors of CFRP in HF solution were examined by electrochemical methods and surface characterization, using HCl, NaCl and NaF solution for comparison.

Findings

The results showed that the specimen in HF solution will have a value of |Z|0.01 Hz one order of magnitude lower, a substantially lower contact angle, more breakage of the surface epoxy and the stronger O─H peak and weaker C─O─C peak in the Fourier transform infrared spectrum, indicating severe hydrolytic damage to the surface epoxy.

Originality/value

The work focuses on the degradation damage to CFRP surface epoxy by specific corrosive media HF.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 April 2024

Jorge Alejandro Silva

The purpose is to conduct a systematic review of circular water management and its role in improving water availability amid increased demand and decreased supply.

Abstract

Purpose

The purpose is to conduct a systematic review of circular water management and its role in improving water availability amid increased demand and decreased supply.

Design/methodology/approach

A systematic literature review was implemented, which helped in the identification, selection and critical appraisal of the various research to answer the research question. It was guided by the Preferred Reporting Items for Systematic Reviews (PRISMA) statement. The review was conducted mainly on Web of Science and Scopus databases between November 20 and December 8, 2022, with search strategies involving free-text searching, phrase searching, truncation and Boolean operators.

Findings

The search process yielded 46 articles exploring circular water management. The findings reveal that circular water management offers more promise than linear or business-as-usual approaches. There are various circular water management models, although most of them emphasize a shift from the “take, make, consume and waste” principles. Contrarily, the success of the circular water management framework hinges on its ability to embrace resilience based on changing environmental conditions. Furthermore, the model focuses on improving inclusiveness with various stakeholders working together to improve water management.

Originality/value

The research is the first of its kind as it identifies a critical gap, the imperative need to develop a universal framework that can significantly advance the comprehension of circular water management.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of 409