Search results

1 – 10 of 142
Article
Publication date: 16 May 2024

He Wang, Zhiguo Li, Haifei Zhou, Zhengqiang Zhou, Wei Lu, Pengzhen Wang, Jiagang Zhang, Jin Gao and Pan Yi

This paper aims to compare the aging behavior of water-based coatings and solvent-based coatings in sulfuric acid environments and to discuss the related mechanism.

Abstract

Purpose

This paper aims to compare the aging behavior of water-based coatings and solvent-based coatings in sulfuric acid environments and to discuss the related mechanism.

Design/methodology/approach

A sulfuric acid solution with a concentration of 5 Wt.% was selected for immersion test at 23°C. The failure behavior of the coating was studied by combining the transformation rules of the macroscopic morphology and basic properties with the results of electrochemical impedance spectrum analysis.

Findings

The results showed that the surface smoothness of the water-based coating was lower than that of the solvent-based coating. The glossiness, thickness and hardness of the water-based coating exhibited more significant changes. The electrochemical test also indicated that the water-based coating was infiltrated by a large number of corrosive media, which may have induced corrosion under the coating. In contrast, the solvent-based coating showed good shielding properties, but the adhesion was seriously affected by the corrosive medium.

Originality/value

This work clarified the difference of failure behavior and mechanism between water-based coatings and solvent-based coatings in acidic environment and provided a theoretical basis for the selection and mechanism research of anticorrosive coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 10 September 2024

Xingbing Yang, Xinye Wang, Wei Li, Tingting Zhang, Mengmeng Yan and Xue Fu

This paper aims to study the direct synthesis of imino methyl ether amino resin using commercially available formaldehyde, melamine and methanol through one-step two-stage…

13

Abstract

Purpose

This paper aims to study the direct synthesis of imino methyl ether amino resin using commercially available formaldehyde, melamine and methanol through one-step two-stage catalysis.

Design/methodology/approach

Initially, melamine undergoes a reaction with formaldehyde to form hydroxylmethylation melamine in a basic setting. Subsequently, hydrochloric acid is incorporated to facilitate the etherification process. The study delves into the impact of various factors during the etherification phase, including the quantity of methanol, the temperature at which etherification occurs, the number of etherification cycles and the amount of catalyst used, on the synthesis of imino methyl-etherified amino resins. Ultimately, the most favorable conditions for etherification are identified through comparative analysis to evaluate the resulting synthesized products.

Findings

The methyl-etherified amino resin, characterized by a stable structure and consistent performance, was efficiently synthesized through a one-step, two-stage catalytic process. Optimal conditions for the etherification stage were determined to be a reaction temperature of 35°C, a melamine to methanol ratio of 1:24 and an addition of hydrochloric acid ranging from 2.2 mL to 2.5 mL. Remarkably, the resulting resin notably enhanced the water resistance, salt resistance and gloss of the canned iron printing varnish coatings.

Originality/value

Amino resins, known for their broad applications across numerous industries, face sustainability and operational efficiency hurdles when produced through traditional methods, which predominantly involve the use of a 37% formaldehyde solution. To tackle these issues, our research introduces an innovative method that add 37% formaldehyde to facilitate industrial production. The use of 37% liquid formaldehyde in this paper has two benefits: first, it is convenient for industrial application and production; Second, it is convenient to provide mild reaction conditions at lower concentrations because the amino group is relatively active, which is convenient for the preservation of the amino group and integrates it with a one-step, two-stage catalytic process. The primary objective of our study is threefold: to reduce the environmental footprint of amino resin synthesis, to optimize the use of resources and to improve the economic viability for its large-scale production. By employing this new strategy, we try to provide a more sustainable and efficient manufacturing process for amino resins.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 June 2024

Francisco Javier Rojas-Macedo, Bernardo Teutle-Coyotecatl, Rosalía Contreras-Bulnes, Laura Emma Rodríguez-Vilchis, Eric Reyes-Cervantes and Ulises Velazquez-Enriquez

This paper aims to compare the surface roughness and hardness of three commercially available self-curing acrylic resins for dental use, under different polymerization conditions.

Abstract

Purpose

This paper aims to compare the surface roughness and hardness of three commercially available self-curing acrylic resins for dental use, under different polymerization conditions.

Design/methodology/approach

A comparative in vitro study was conducted using a convenience sample of 12 × 5 × 2 mm blocks with n = 40 for each material (Nic Tone, Arias Plus and Orthocryl®), with subgroups according to the polymerization method: conventional (C) and polymerization under ambient conditions (A). The surface roughness of the materials was measured using a profilometer; hardness was measured with a portable hardness tester. Additionally, surface morphology as well as particles size and morphology were evaluated with scanning electron microscopy.

Findings

There were significant differences in roughness and hardness values between the three self-curing acrylic resins (p < 0.05), as well as within each self-curing acrylic resin according to the polymerization method used (p < 0.05). The samples polymerized with the conventional method presented lower surface roughness and hardness values.

Originality/value

This study provides scientific evidence of values not provided by manufacturers in relation to the surface roughness and hardness of these materials, and all of them met the ideal minimum values of surface roughness, regardless of the polymerization technique used.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 August 2024

Qiqi Zhang, Weijun Zhen, Quansheng Ou, Yusufu Abulajiang and Gangshan Ma

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization…

Abstract

Purpose

The objective was to investigate the utility of cottonseed oil (CSO) as a raw material for the synthesis of CSO water-based alkyd resin. The synthesis involved the polymerization of CSO, trimethylolpropane, phthalic anhydride (PA) and trimellitic anhydride (TMA). The prepared resin coating material was subsequently applied to the surface of steel structure material.

Design/methodology/approach

This study aimed to synthesize water-based alkyd resins using CSO. Therefore, the alkyd resin was introduced with TMA containing carboxyl groups and neutralized with triethylamine (TEA) to form a water-soluble salt. Then, the esterification kinetics of CSO water-based alkyd resin were investigated, and finally, the basic properties of CSO water-based alkyd resin coating were evaluated.

Findings

It was demonstrated that CSO water-based alkyd resin exhibited excellent water solubility and that the esterification kinetic of the synthesis reaction could be described by a second-order reaction. The coating properties of the material were investigated and found to have good basic properties, with 40% resin addition having the best corrosion resistance. Consequently, it could be effectively applied to the surface of steel structural materials.

Originality/value

This study not only met the requirement of environmentally friendly development but also expanded the application of CSO through the synthesis of CSO water-based alkyd resin via alcoholysis. Compared to fatty acid process, the alcoholysis reduced the need for fatty acid pre-extraction, simplifying the alkyd resin synthesis process. Thus, economic costs are effectively reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 July 2024

Umi Afiqah Omar, Pavan Kumar, Muhamad Faris Ab Aziz, Awis Qurni Sazili and Mohammad Rashedi Ismail-Fitry

This paper aims to evaluate the effects of salting duration and salt concentration on the physicochemical, colour, texture and sensory attributes of buffalo meatballs.

Abstract

Purpose

This paper aims to evaluate the effects of salting duration and salt concentration on the physicochemical, colour, texture and sensory attributes of buffalo meatballs.

Design/methodology/approach

Minced buffalo meat was mixed with salt at 1 or 2% concentration and stored for 0 h, 24 h or 48 h during the preparation of meatballs. The developed meatballs were analysed for moisture content, water holding capacity (WHC), pH, cooking yield, shrinkage, colour, texture profile analysis, gelling properties and sensory attributes.

Findings

The salting durations of 24 and 48 h had significant (p < 0.05) effects on the WHC and colour attributes of the buffalo meatballs. A 2% salt addition in meatballs significantly (p < 0.05) affected pH and cooking yield. Salting for 24 h with 2% salt concentration significantly (p < 0.05) increased the hardness, chewiness and gel strength of the meatballs. Thus, salting for 24 h with a 2% salt concentration improved the physicochemical, textural and sensory attributes of buffalo meatballs.

Practical implications

The study highlighted the importance of salting treatment during the preparation of meat products. For example, salting buffalo meatballs with a 2% salt concentration for 24 h could improve their functional and sensory attributes.

Originality/value

Studies on salting durations at different salt concentrations in buffalo meat are very limited. An optimized combination of salting duration and salt concentration during the preparation of buffalo meatballs could improve the quality attributes and acceptability of these products.

Details

Nutrition & Food Science , vol. 54 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 17 April 2024

Manisha Malik, Devyani Tomar, Narpinder Singh and B.S. Khatkar

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Abstract

Purpose

This study aims to provide a salt ready-mix to instant fried noodles manufacturers.

Design/methodology/approach

Response surface methodology was used to get optimized salt ready-mix based on carbonate salt, disodium phosphate, tripotassium phospahte, sodium hexametaphosphate and sodium chloride. Peak viscosity of flour and yellowness, cooking loss and hardness of noodles were considered as response factors for finding optimized salt formulation.

Findings

The results showed that salts have an important role in governing quality of noodles. Optimum levels of five independent variables of salts, namely, carbonate salt (1:1 mixture of sodium to potassium carbonate), disodium phosphate, sodium hexametaphosphate, tripotassium phosphate and sodium chloride were 0.64%, 0.29%, 0.25%, 0.46% and 0.78% on flour weight basis, respectively.

Originality/value

To the best of the authors’ knowledge, this is the first study to assess the effect of different combinations of different salts on the quality of noodles. These findings will also benefit noodle manufacturers, assisting in production of superior quality noodles.

Details

Nutrition & Food Science , vol. 54 no. 4
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 2 July 2024

Shubham Potdar and Ramanand Jagtap

For the sake of sustainable development and environmental preservation, it is crucial to develop UV-curable coatings composed of renewable resources. Castor oil, being both…

32

Abstract

Purpose

For the sake of sustainable development and environmental preservation, it is crucial to develop UV-curable coatings composed of renewable resources. Castor oil, being both bio-based and economical, serves as the focal point of this research paper. The purpose of this research paper is to synthesize, formulate and apply a UV-curable biobased oligomer ECOSAGMA as a wood coating, with a focus on sustainable development and environmental preservation. Castor oil, being both bio-based and economical, serves as the focal point of this research paper.

Design/methodology/approach

ECOSAGMA was prepared by reacting epoxidized castor oil with sebacic acid, followed by reaction with glycidyl methacrylate through ring opening reaction. The chemical structure of ECOSAGMA was confirmed by Fourier-Transform infrared spectroscopy, 13C-NMR and 1H-NMR spectroscopy. The synthesized oligomer was used for UV-curable coating formulations by combining it with varying amounts of TMPTA from 10 to 40 wt.% and studied for their rheological properties. The UV curable formulations were co-photopolymerized into thin coatings and were thoroughly examined based on thermal, chemical and mechanical properties.

Findings

The UV-cured coating containing ECOSAGMA and TMPTA exhibits exceptional mechanical, chemical and thermal properties, underscoring their potential for deployment in real-world application. It is observed that an increase in the concentration of TMPTA is associated with a notable enhancement in the properties of the UV-cured coatings. The UV-cured wood coating, composed of 40 wt.% TMPTA, demonstrates remarkable stain resistance properties.

Originality/value

In conclusion, by embracing eco-friendly and economically conscious principles., it is evident that this synthesized novel castor oil-based oligomer offers a range of valuable properties to the coating such as stain resistance and thermal stability as well as characteristics such as gloss, hardness, adhesion and chemical resistance.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 30 April 2024

Isiaka Oluwole Oladele, Omoye Oseyomon Odemilin, Samson Oluwagbenga Adelani, Anuoluwapo Samuel Samuel Taiwo and Olajesu Favor Olanrewaju

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid…

Abstract

Purpose

This paper aims to reduce waste management and generate wealth by investigating the novelty of combining chicken feather fiber and bamboo particles to produce hybrid biocomposites. This is part of responsible production and sustainability techniques for sustainable development goals. This study aims to broaden animal and plant fiber utilization in the sustainable production of epoxy resins for engineering applications.

Design/methodology/approach

This research used two reinforcing materials [chicken feather fiber (CFF) and bamboo particles (BP)] to reinforce epoxy resin. The BPs were kept constant at 6 Wt.%, while the CFF was varied within 3–15 Wt.% in the composites to make CFF-BP polymer-reinforced composite (CFF-BP PRC). The mechanical experiment showed a 21% reduction in densities, making the CFF-BP PRC an excellent choice for lightweight applications.

Findings

It was discovered that fabricated composites with 10 mm CFF length had improved properties compared with the 15 mm CFF length and pristine samples, which confirmed that short fibers are better at enhancing randomly dispersed fibers in the epoxy matrix. However, the ballistic properties of both samples matched. There is a 40% increase in tensile strength and a 54% increase in flexural strength of the CFF-BP PRC compared to the pristine sample.

Originality/value

According to the literature review, to the best of the authors’ knowledge, this is a novel study of chicken fiber and bamboo particles in reinforcing epoxy composite.

Details

Journal of Responsible Production and Consumption, vol. 1 no. 1
Type: Research Article
ISSN: 2977-0114

Keywords

Article
Publication date: 30 May 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber–reinforced composites.

Design/methodology/approach

In this research, the epoxy/bamboo/TiO2 hybrid composite filled with 0–8 Wt.% TiO2 particles has been fabricated using simple hand layup techniques, and testing of the developed composite was done in accordance with the American Society for Testing and Materials (ASTM) standard.

Findings

The results of this study indicate that the addition of TiO2 particles improved the mechanical properties of the developed epoxy/bamboo composites. Tensile properties were found to be maximum for 6 Wt.%, and impact strength was found to be maximum for 8 Wt.% TiO2 particles-filled composite. The highest flexural properties were found at a lower TiO2 fraction of 2 Wt.%. Adding TiO2 filler helped to reduce the water absorption rate. The studies related to the wear and friction behavior of the composite under dry and abrasive wear conditions reveal that TiO2 filler was beneficial in improving the wear performance of the composite.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo fibers to develop a novel composite material. TiO2 micro and nanoparticles are promising filler materials; it helps to enhance the mechanical and tribological properties of the epoxy composites and in literature, there is not much work reported, where TiO2 is used as a filler material with bamboo fiber–reinforced epoxy composites.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 April 2024

Jian Sun, Zhanshuai Fan, Yi Yang, Chengzhi Li, Nan Tu, Jian Chen and Hailin Lu

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low…

Abstract

Purpose

Aluminum alloy is considered an ideal material in aerospace, automobile and other fields because of its lightweight, high specific strength and easy processing. However, low hardness and strength of the surface of aluminum alloys are the main factors that limit their applications. The purpose of this study is to obtain a composite coating with high hardness and lubricating properties by applying GO–PVA over MAO coating.

Design/methodology/approach

A pulsed bipolar power supply was used as power supply to prepare the micro-arc oxidation (MAO) coating on 6061 aluminum sample. Then a graphene oxide-polyvinyl alcohol (GO–PVA) composite coating was prepared on MAO coating for subsequent experiments. Samples were characterized by Fourier infrared spectroscopy, X-ray diffraction, Raman spectroscopy and thermogravimetric analysis. The friction test is carried out by the relative movement of the copper ball and the aluminum disk on the friction tester.

Findings

Results showed that the friction coefficient of MAO samples was reduced by 80% after treated with GO–PVA composite film.

Originality/value

This research has made a certain contribution to the surface hardness and tribological issues involved in the lightweight design of aluminum alloys.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0427/

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 142