Search results

1 – 10 of over 1000
Article
Publication date: 15 December 2023

Ümran Burcu Alkan, Nilgün Kızılcan and Başak Bengü

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Abstract

Purpose

The purpose of this study is the development of sustainable and low-formaldehyde emission wood adhesive formulations.

Design/methodology/approach

Three-step urea formaldehyde (UF) resin has been in situ modified with calcium lignosulfonate (LS) and/or 1,4 butanediol diglycidyl ether (GE). The structural, chemical, thermal and morphological characterizations were carried out on resin samples. These resins have been applied for particleboard pressing, and UF, UF-LS and UF-GE were evaluated as P2 classes according to EN 312.

Findings

The results show that the improved LS- or diglycidyl ether-modified UF wood adhesives were successful in their adhesive capacity, and the formaldehyde content of the final product was obtained as low as 8 mg/100 g. This paper highlights that the presented adhesive formulations could be a potential eco-friendly and cost-effective alternative to formaldehyde-based wood adhesives for interior particleboard production.

Research limitations/implications

Combination of LS and GE resulted in weaker mechanical properties and fulfilled P1 class particleboards due to temperature and duration conditions. Therefore, in situ usage of LS or GE in UF resins is highly recommended for particleboard pressing. Formaldehyde content of particleboards was determined with the perforator method according to EN 12460-5 and all of the particleboards exhibited E1 class. LS was more efficient in decreasing formaldehyde content than GE.

Practical implications

This study provides the application of particleboards with low formaldehyde emission.

Social implications

The developed LS- and diglycidyl ether-modified UF resins made it possible to obtain boards with significantly low formaldehyde content compared with commercial resins.

Originality/value

The developed formaldehyde-based resin formulation made it possible to produce laboratory-scale board prototypes using LS or GE without sacrificing of press factors and panel quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 September 2023

Xingbing Yang, Xinye Wang, Shuang Huang, Xin Liu, Xiang Huang and Ting Lei

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Abstract

Purpose

In this study, solid formaldehyde, benzoguanamine and butanol were used to synthesize butylated benzo-amino resin by one-step-two-stage method.

Design/methodology/approach

This research first examined the influence of solid formaldehyde content on the hydroxymethylation phase. Subsequently, the effects of butanol content, etherification time and hydrochloric acid content on the formation of benzo-amino resin during the etherification stage were studied in detail. In addition, the reaction process was further analyzed through interval sampling withdrawing during the hydroxymethylation and etherification stages. Finally, the synthesized benzo-amino resins were used in the production of high solid content polyester and acrylic coatings and the properties of that were also evaluated.

Findings

Based on the experimental findings, the authors have successfully determined the optimal process conditions for the one-step-two-stage method in this study. The hydroxymethylation stage demonstrated the most favorable outcomes at a reaction temperature of 60°C and a pH of 8.5. Similarly, for the etherification stage, the optimal conditions were achieved at a temperature of 45°C and a pH of 4.5. Furthermore, the investigation revealed that a ratio of benzoguanamine to solid formaldehyde to n-butanol, specifically at 1:5.2:15, produced the best results. The performance of the resulting etherified benzo-amino resin was thoroughly evaluated in high solid content coatings, and it exhibited promising characteristics. Notably, there was a significant enhancement in the water resistance, solvent resistance and glossiness of canned iron printing varnish coatings.

Originality/value

Amino resin, a versatile chemical compound widely used in various industries, presents challenges in terms of sustainability and operational efficiency when synthesized using conventional methods, primarily relying on a 37% formaldehyde solution. To address these challenges, the authors propose a novel approach in this study that combines the advantages of the solid formaldehyde with a two-stage catalytic one-step synthesis process. The primary objective of this research is to minimize the environmental impact associated with amino resin synthesis, optimize resource utilization and enhance the economic feasibility for its industrial implementation. By adopting this alternative approach, the authors aim to contribute toward a more sustainable and efficient production of amino resin.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 April 2023

Kaiyan Yang, Xiaowu Gong, Lanli Bai, Yun Zhang and Na Zhou

This study aims to prepare a low-formaldehyde and environmentally friendly glucose-lignin-based phenolic resin.

Abstract

Purpose

This study aims to prepare a low-formaldehyde and environmentally friendly glucose-lignin-based phenolic resin.

Design/methodology/approach

The authors directly used lignin to substitute formaldehyde to prepare lignin-based phenolic resin (LPF) with urea as formaldehyde absorbent. To improve the performance of the adhesive, the biobased glucose was introduced and the modified glucose-LPF (GLPF) was obtained.

Findings

The results showed that when the replacing amount of lignin to formaldehyde reached 15 Wt.%, the physical properties of the prepared LPF met the Chinese national standard, and the bonding strength increased by 21.9%, from 0.75 to 0.96 MPa, compared with PF. The addition of glucose boost the performance of wood adhesive, for example, the free phenol content of the obtained GLPF was significantly reduced by 79.11%, from 5.60% to 1.17%, the bonding strength (1.19 MPa) of GLPF increased by 19.3% in comparison to LPF and the curing temperature of GLPF decreased by 13.08%.

Practical implications

The low-formaldehyde and environmentally friendly GLPF has higher bonding strength and lower curing temperature, which is profitable to industrial application.

Social implications

The prepared GLPF has lower free formaldehyde and formaldehyde emission, which is cost-effective and beneficial to human health.

Originality/value

The joint work of lignin and glucose provides the wood adhesive with increased bonding strength, decreased free phenol content and reduced curing temperature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 August 2022

Salise Oktay, Nilgün Kızılcan and Başak Bengü

In industrial applications, formaldehyde-based wood adhesives have been used extensively because of their low costs and high reactivity. However, their real-world applications are…

Abstract

Purpose

In industrial applications, formaldehyde-based wood adhesives have been used extensively because of their low costs and high reactivity. However, their real-world applications are hindered by some main bottlenecks, especially the formaldehyde emission and usage of nonrenewable raw materials. The purpose of this study is the development of sustainable and formaldehyde-free wood adhesive formulation.

Design/methodology/approach

In this study, starch and tannin-based wood adhesive were synthesized. Chemical structures and thermal properties of the prepared bio-based resin formulations were elucidated by using Fourier transform infrared and differential scanning calorimetry analysis, respectively. Laboratory scale particleboard production was carried out to determine the performance of the developed resin formulations. Obtained results were evaluated in dry medium (P2) according to European norms EN 312 (2010). Furthermore, the board formaldehyde content was determined by using the perforator method according to the European Norm EN 12460-5.

Findings

The results show that the improved starch and tannin-based wood adhesives were successful in their adhesive capacity, and the formaldehyde content of the final product was obtained as low as 0.75 mg/100 g. This paper highlights that the presented adhesive formulations could be a potential eco-friendly and cost-effective alternative to the formaldehyde-based wood adhesives for interior particleboard production.

Research limitations/implications

Starch-based resins in the liquid form needed to be continuously mixed throughout their shelf life to prevent the starch from settling because it was not possible to dissolve the precipitated starch again after a while. For this reason, starch was given to the chips in powder form while preparing the particleboard.

Practical implications

In conclusion, this study shows that the developed bio-based resin formulations have a high potential to be used for producing interior-grade particleboards instead of commercial formaldehyde-based wood adhesives because the obtained results generally satisfied the interior grade particleboard requirements according to European norms EN 312, P2 class (2010). In addition, it was determined that the produced boards had significantly low formaldehyde content. The low formaldehyde content of the final boards was not because of the resin but because of the natural structure of the wood raw material, press parameters and environmental factors.

Social implications

The developed bio-based resin system made it possible to obtain boards with significantly low formaldehyde content compared to commercial resins.

Originality/value

The developed bio-based resin formulation made it possible to produce laboratory-scale board prototypes at lower press factors and board densities compared to their counterparts.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 June 2014

Shaohong Wei, Youjuan Zhang and Meihua Zhou

The purpose of this paper is to synthesize SnO2–ZnO hollow nanofibers, study their sensing properties and introduce an attractive candidate for formaldehyde detection in practice…

Abstract

Purpose

The purpose of this paper is to synthesize SnO2–ZnO hollow nanofibers, study their sensing properties and introduce an attractive candidate for formaldehyde detection in practice.

Design/methodology/approach

Pure and SnO2–ZnO hollow nanofibers were synthesized by electrospinning method and characterized via X-ray diffraction, field-emission scanning electron microscopy and Fourier transform infrared spectroscopy. The formaldehyde-sensing properties were investigated.

Findings

The optimum performance was obtained at 260°C by the 14 at.% SnO2–ZnO hollow nanofiber sensor. The sensor could detect formaldehyde down to 0.1 ppm with rapid response–recovery time (4-6 s and 7-9 s, respectively), high sensitivity, good selectivity and stability. The relationship between the sensor’s sensitivity and formaldehyde concentration suggests that the adsorbed oxygen species on the sensor’s surface is O2−. The prominent sensing properties are attributed to the one dimensional hollow nanofiber structures and the promoting effects of SnO2.

Practical implications

The sensor fabricated from 14 at.% SnO2–ZnO fibers exhibits excellent formaldehyde-sensing characteristics. It can be used for formaldehyde detection in practice.

Social implications

The electrospinning method is a very simple and convenient method for fabricating hollow nanofibers and the sensing material is of low cost.

Originality/value

To the best of the authors’ knowledge, studies on formaldehyde sensing of SnO2–ZnO hollow nanofibers have not been reported before.

Details

Sensor Review, vol. 34 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 2006

K. Azuma, I. Uchiyama and K. Ikeda

In order to clarify the determining features of approaches adopted in policies for regulating indoor air pollution, this paper analyzes case studies of the approaches taken, in…

1434

Abstract

Purpose

In order to clarify the determining features of approaches adopted in policies for regulating indoor air pollution, this paper analyzes case studies of the approaches taken, in four countries, to risk management of indoor air pollution caused by formaldehyde in housing.

Design/methodology/approach

We pursued case studies to provide historical perspectives on early warnings and actions taken in relation to suspected health hazards from exposure to formaldehyde, in Germany, the USA, Canada and Japan. Many investigations of indoor air pollution caused by formaldehyde in housing have been conducted, and regulations established, in these countries. We reviewed the vast quantity of literature and documents relating to governmental and/or industrial actions and of research on indoor air quality produced in the past 40 years, and compared the approaches adopted.

Findings

The study identified the differing character of the approaches adopted in policies for the regulation of indoor air pollution, in order to clarify the range of actions that may be taken in response to reported risk from indoor air pollutants and describe possible risk management models for indoor air pollution.

Practical implications

Understanding of the nature of approaches already adopted will help to preserve good indoor air quality and minimize health hazards due to indoor air pollution.

Originality/value

This paper identifies a range of actions that have been taken in response to suspected risk from indoor air pollutants, through the analysis of its case studies.

Details

Facilities, vol. 24 no. 11/12
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 1 June 1999

A.M.A. Nada, M.A. Yousef, K.A. Shaffei and A.M. Salah

Lignin precipitated from different black liquors wasted from the cooking of rice straw, bagasse and cotton stalks, to produce pulp and paper, can replace phenol by up to 40 per…

750

Abstract

Lignin precipitated from different black liquors wasted from the cooking of rice straw, bagasse and cotton stalks, to produce pulp and paper, can replace phenol by up to 40 per cent in phenol formaldehyde resin. The properties of the resin produced from bagasse lignin formaldehyde are nearly the same as when the resin IS produced from phenol formaldehyde. Replacement of phenol by lignin in phenol formaldehyde resin has an economical effect and reduces the pollution caused by draining black liquor into rivers and streams. The properties of the resin produced from rice straw lignin are lower than resin from bagasse and cotton stalk lignin. The effect of increasing the content of lignin in the resin on the resin properties was studied. The effect of polymerization time and temperature on the resin properties is also clarified. The molecular structure of the lignins used plays an important role on the properties of the phenol lignin formaldehyde produced.

Details

Pigment & Resin Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 2002

P. Kalenda and A. Kalendová

The paper deals with the mode of film formation from urea–formaldehyde and melamine–formaldehyde resins combined with alkyd resin based on castor oil‐modified alkyd. The…

Abstract

The paper deals with the mode of film formation from urea–formaldehyde and melamine–formaldehyde resins combined with alkyd resin based on castor oil‐modified alkyd. The properties of hardened coatings (such as hardness, chemical stability, and adhesion to substrate) were followed in dependence on the ratios of reaction components. An apparatus was built for measuring the formaldehyde emissions escaping from the solid coating films. The determination was performed by the pararosaniline method. The addition of imidazolidine in a concentration up to 10 per cent can reduce the emissions of formaldehyde escaping from the solid films to a considerable amount.

Details

Pigment & Resin Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 2019

Bo Wang, Yanhua Zhang, Haiyan Tan and Jiyou Gu

The purpose of the study was to prepare melamine-urea-formaldehyde (MUF) resin that would be resistant to boiling water and high temperature and exhibit low formaldehyde emission.

Abstract

Purpose

The purpose of the study was to prepare melamine-urea-formaldehyde (MUF) resin that would be resistant to boiling water and high temperature and exhibit low formaldehyde emission.

Design/methodology/approach

The authors prepared MUF resin with different F/(M + U) and changed the amount of melamine added, through the analysis of MUF resin properties to get the best reaction parameters, and used different amino acid cure systems including NH4Cl cured the resin.

Findings

Resin’s heat resistance and water resistance are mainly determined by the amount of melamine added, and formaldehyde emission of the plywood can be changed by adjusting F/(M + U). The peak temperature of the curing agent-cured resin increases as compared with the self-curing resin. Stronger the acidity of curing agent, faster the viscosity increased in probation period and lower the bonding strength and heat resistance of the resin.

Research limitations/implications

Melamine improves the heat resistance and water resistance of the resin. When the amount of melamine is more than a certain value, water resistance of the resin decreased.

Practical implications

MUF resin that is resistant to boiling water and exhibits low formaldehyde emission can be used in high temperature, high humidity and strict formaldehyde emission environment and can also be combined with other materials.

Social implications

It was helpful to reduce the effect of formaldehyde emission on people’s health and environmental pollution and is also beneficial for the expansion of the application range of aldehyde resin.

Originality/value

The originality is twofold: the influence of the acid strength of curing agent on the bonding strength of the resin adhesive and the method for preparing high performance MUF resin by following the traditional process.

Details

Pigment & Resin Technology, vol. 48 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 30 April 2021

Watcharaporn Wongsakoonkan, Sumate Pengpumkiat, Vorakamol Boonyayothin, Chaiyanun Tangtong, Wisanti Laohaudomchok and Wantanee Phanprasit

The purpose of this study was to develop an accurate, selective, low-cost and user-friendly colorimetric pad to detect formaldehyde at low concentration.

1098

Abstract

Purpose

The purpose of this study was to develop an accurate, selective, low-cost and user-friendly colorimetric pad to detect formaldehyde at low concentration.

Design/methodology/approach

1-phenyl-1,3-butanedione, a reactive chemical, was selected to develop the colorimetric pad for indoor air formaldehyde measurement. Silica nanoparticle impregnated with the reactive chemical was coated on the cellulose filter surface to increase the reactive site. A certified formaldehyde permeation tube was used to generate six varied concentrations between 0.01 and 0.10 ppm in a test chamber. The color intensity on the pads was measured using an image processing program to produce a formaldehyde concentration reading chart. The colorimetric pad was tested for optimum reaction time, accuracy, precision, stability, selectivity and shelf life.

Findings

The color of the pads changed from white to yellow and the color intensity varied with the concentrations and appeared to be stable after exposure to formaldehyde for 8 hours. At room temperature, the stability of the pad was 7 days, and shelf life was 120 days. The accuracy, precision and bias of the pad were 12.38%, 0.032 and 6.0%, respectively. Carbonyl compounds, benzene and toluene did not interfere with the reading of this developed colorimetric pad.

Originality/value

The developed colorimetric pad meets NIOSH's criteria for an overall accuracy of ±25%, bias = 10%. They were accurate at low concentrations, user-friendly and had low cost compared to an electronic direct reading instrument (cost of chemicals and materials was 21.50 Bath or 0.69 USD per piece) so that favorable for the use of general people for health protection.

Details

Journal of Health Research, vol. 36 no. 4
Type: Research Article
ISSN: 0857-4421

Keywords

1 – 10 of over 1000