Search results

1 – 10 of 27
Article
Publication date: 30 August 2024

Khair Ul Faisal Wani and Nallasivam K.

The purpose of this study is to numerically model the rigid pavement resting on Pasternak soil and to examine its various response parameters and stress resultants like…

Abstract

Purpose

The purpose of this study is to numerically model the rigid pavement resting on Pasternak soil and to examine its various response parameters and stress resultants like deflection, rotation, bending moment and shear force when subjected to aircraft loading.

Design/methodology/approach

The study is carried out using a one-dimensional (1D) beam element based on the finite element method (FEM). Each node in this element has three rotational and three translational degrees of freedom (DOF). MATLAB programming is used to perform the static analysis of rigid pavement.

Findings

Response parameters and stress resultants of the rigid pavement were determined. The FEM used in this work is validated by two closed-form numerical examples, which are in great accord with previous research findings with a maximum divergence of 4.64%, therefore verifying the finite element approach used in the current study. Additionally, various parametric studies have been carried out to study the variations in response parameters and stress resultants.

Research limitations/implications

The investigation at hand focuses exclusively on the static analysis of the pavement. The study constraints pertaining to the preliminary design phase of rigid pavements are such that a comprehensive three-dimensional finite element analysis is deemed unnecessary.

Originality/value

As limited previous research had performed the static analysis of rigid pavement on Pasternak foundation with 6 DOF. Furthermore, no prior study has done seven separate parametric investigations on the static analysis of rigid pavement.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 September 2022

Lawanya T., Vidhya M. and Govindarajan A.

The purpose of this paper to analyze the effect of Soret with heat and mass transfer on an unsteady two-dimensional Magnetohydrodynamics flow through a porous medium under the…

Abstract

Purpose

The purpose of this paper to analyze the effect of Soret with heat and mass transfer on an unsteady two-dimensional Magnetohydrodynamics flow through a porous medium under the influence of the uniform transverse magnetic field in a rotating parallel plate is considered.

Design/methodology/approach

A mathematical model was developed using the slip conditions under unsteady state situations. Analytical expressions for the velocity, temperature and concentration profiles, wall shear stress, rates of heat and mass transfer and volumetric flow rate were obtained and computationally discussed with respect to the non-dimensional parameters. Further, the velocity reduces with increasing Hartmann number M and increases with Grashof number Gr and permeability parameter K.

Findings

It is observed that temperature reduces with an increase in Prandtl number Pr and ω. It is noted that the thermal radiation increases with increase in Soret number Sr, Schmidt number Sc, Prandtl number pr and ω.

Originality/value

Concentration decreases with an increase in radiation parameter R and chemical reaction parameter Kc.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 September 2024

J. Jayaprakash, Vediyappan Govindan, S.S. Santra, S.S. Askar, Abdelaziz Foul, Susmay Nandi and Syed Modassir Hussain

Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid…

Abstract

Purpose

Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid nanoparticles to conventional liquids may greatly improve their thermal conductivity, according to the available evidence. This study aims to examine the influence of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. The investigation considers the effects of thermal radiation, Dufour and Soret.

Design/methodology/approach

The mathematical model is formulated based on the fundamental assumptions of mass, energy and momentum conservation. The implicit models are epitomized by a set of interconnected nonlinear partial differential equations, which include a suitable and comparable adjustment. The numerical solution to these equations is assessed for approximate convergence by the Runge−Kutta−Fehlberg method based on the shooting technique embedded with the MATLAB software.

Findings

The findings are presented through graphical representations, offering a visual exploration of the effects of various dynamic parameters on the flow field. These parameters encompass a wide range of factors, including radiation, thermal and Brownian diffusion parameters, Eckert, Lewis and Soret numbers, magnetic parameters, Maxwell fluid parameters, Darcy numbers, thermal and solutal buoyancy factors, Dufour and Prandtl numbers. Notably, the authors observed that nanoparticles with a spherical shape exerted a significant influence on the stream function, highlighting the importance of nanoparticle geometry in fluid dynamics. Furthermore, the analysis revealed that temperature profiles of nanomaterials were notably affected by their shape factor, while concentration profiles exhibited an opposite trend, providing valuable insights into the behavior of nanofluids in porous media.

Originality/value

A distinctive aspect of the research lies in its novel exploration of the impact of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. By considering variables such as solar radiation, external magnetic flux, thermal and Brownian diffusion parameters and nanoparticle shape factor, the authors ventured into uncharted territory within the realm of fluid dynamics. These variables, despite their significant relevance, have not been extensively studied in previous research, thus underscoring the originality and value of the authors’ contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 September 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib, S.H.A.M. Shah, Anuar Ishak and Taseer Muhammad

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To…

Abstract

Purpose

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To track changes in mass deposition, the effect of particle thermophoresis is therefore seen in a mixed convective flow of Williamson hybrid nanofluids upon a stretching/shrinking sheet.

Design/methodology/approach

The PDEs are transformed into ordinary differential equations (ODEs) using the similarity technique and then the bvp4c solver is employed for the altered transformed equations. The main factors influencing the heat, mass and flow profiles are displayed graphically.

Findings

The findings imply that the larger effects of the thermophoretic parameter cause the mass transfer rate to drop for both solutions. In addition, the suggested hybrid nanoparticles significantly increase the heat transfer rate in both outcomes. Hybrid nanoparticles work well for producing the most energy possible. They are essential in causing the flow to accelerate at a high pace.

Practical implications

The consistent results of this analysis have the potential to boost the competence of thermal energy systems.

Originality/value

It has not yet been attempted to incorporate hybrid nanofluids and thermophoretic particle deposition impact across a vertical stretching/shrinking sheet subject to double-diffusive mixed convection flow in a Williamson model. The numerical method has been validated by comparing the generated numerical results with the published work.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 July 2024

Sivasankaran Sivanandam, Turki J. Alqurashi and Hashim M. Alshehri

This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the…

Abstract

Purpose

This study aims to investigate numerically the impact of the three-dimensional convective nanoliquid flow on a rotating frame embedded in the non-Darcy porous medium in the presence of activation energy. The cross-diffusion effects, i.e. Soret and Dufour effects, and heat generation are included in the study. The convective heating condition is applied on the bounding surface.

Design/methodology/approach

The control model consisted of a system of partial differential equations (PDE) with boundary constraints. Using suitable similarity transformation, the PDE transformed into an ordinary differential equation and solved numerically by the Runge–Kutta–Fehlberg method. The obtained results of velocity, temperature and solute concentration characteristics plotted to show the impact of the pertinent parameters. The heat and mass transfer rate and skin friction are also calculated.

Findings

It is found that both Biot numbers enhance the heat and mass distribution inside the boundary layer region. The temperature increases by increasing the Dufour number, while concentration decreases by increasing the Dufour number. The heat transfer is increased up to 8.1% in the presence of activation energy parameter (E). But, mass transfer rate declines up to 16.6% in the presence of E.

Practical implications

The applications of combined Dufour and Soret effects are in separation of isotopes in mixture of gases, oil reservoirs and binary alloys solidification. The nanofluid with porous medium can be used in chemical engineering, heat exchangers and nuclear reactor.

Social implications

This study is mainly useful for thermal sciences and chemical engineering.

Originality/value

The uniqueness in this research is the study of the impact of activation energy and cross-diffusion on rotating nanoliquid flow with heat generation and convective heating condition. The obtained results are unique and valuable, and it can be used in various fields of science and technology.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2024

Yangtao Xing, Fugang Zhai, Shengnan Li, Xiaonan Wang and Zhiqiang He

This study aims to investigate the causes of leakage in radial oil seals under dynamic eccentricity, elucidate the influence of operating parameters on leakage failure and develop…

Abstract

Purpose

This study aims to investigate the causes of leakage in radial oil seals under dynamic eccentricity, elucidate the influence of operating parameters on leakage failure and develop methods for predicting and preventing such leakage.

Design/methodology/approach

Based on the principle of cam motion and considering viscoelasticity, develops a motion model of the compression and release of the shaft seal and proposes a method to determine its failure. In addition, this study quantifies the leakage gap and formulates a quantitative calculation model to accurately determine the location and shape parameters of the leakage gap.

Findings

Leakage gaps predominantly occur during the release phase of the shaft seal. Their presence can be identified by comparing the descending times of the seal and the shaft during this phase. An increase in rotation speed and eccentricity heightens the likelihood of gap formation, with both the dimensions and leakage rate of the gap increasing as these factors escalate. Eccentricity, in particular, has a more pronounced effect on gap formation.

Originality/value

This study clarifies the failure mechanisms of radial oil seals under dynamic eccentricity and introduces a criterion for identifying leakage gaps, providing valuable theoretical guidance for the design and optimization of radial oil seals.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0192/.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 July 2024

U.S. Mahabaleshwar, S.M. Sachin, A.B. Vishalakshi, Gabriella Bognar and Bengt Ake Sunden

The purpose of this paper is to study the two-dimensional micropolar fluid flow with conjugate heat transfer and mass transpiration. The considered nanofluid has graphene…

Abstract

Purpose

The purpose of this paper is to study the two-dimensional micropolar fluid flow with conjugate heat transfer and mass transpiration. The considered nanofluid has graphene nanoparticles.

Design/methodology/approach

Governing nonlinear partial differential equations are converted to nonlinear ordinary differential equations by similarity transformation. Then, to analyze the flow, the authors derive the dual solutions to the flow problem. Biot number and radiation effect are included in the energy equation. The momentum equation was solved by using boundary conditions, and the temperature equation solved by using hypergeometric series solutions. Nusselt numbers and skin friction coefficients are calculated as functions of the Reynolds number. Further, the problem is governed by other parameters, namely, the magnetic parameter, radiation parameter, Prandtl number and mass transpiration. Graphene nanofluids have shown promising thermal conductivity enhancements due to the high thermal conductivity of graphene and have a wide range of applications affecting the thermal boundary layer and serve as coolants and thermal management systems in electronics or as heat transfer fluids in various industrial processes.

Findings

Results show that increasing the magnetic field decreases the momentum and increases thermal radiation. The heat source/sink parameter increases the thermal boundary layer. Increasing the volume fraction decreases the velocity profile and increases the temperature. Increasing the Eringen parameter increases the momentum of the fluid flow. Applications are found in the extrusion of polymer sheets, films and sheets, the manufacturing of plastic wires, the fabrication of fibers and the growth of crystals, among others. Heat sources/sinks are commonly used in electronic devices to transfer the heat generated by high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes to a fluid medium, thermal radiation on the fluid flow used in spectroscopy to study the properties of materials and also used in thermal imaging to capture and display the infrared radiation emitted by objects.

Originality/value

Micropolar fluid flow across stretching/shrinking surfaces is examined. Biot number and radiation effects are included in the energy equation. An increase in the volume fraction decreases the momentum boundary layer thickness. Nusselt numbers and skin friction coefficients are presented versus Reynolds numbers. A dual solution is obtained for a shrinking surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2024

Arthur de Carvalho Cruzeiro, Leonardo Santana, Danay Manzo Jaime, Sílvia Ramoa, Jorge Lino Alves and Guilherme Mariz de Oliveira Barra

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating…

Abstract

Purpose

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating polymers, to components with functional properties, including electrical conductivity and chemical sensitivity.

Design/methodology/approach

Extrusion-based 3D printed parts of polyethylene terephthalate modified with glycol (PETG) and polypropylene (PP) were coated in an aqueous acid solution via in situ oxidative polymerization of Ani. First, the feedstocks were characterized. Densely printed samples were then used to assess the adhesion of polyaniline (PAni) and electrical conductivity on printed parts. The best feedstock candidate for PAni coating was selected for further analysis. Last, a Taguchi methodology was used to evaluate the influence of printing parameters on the coating of porous samples. Analysis of variance and Tukey post hoc test were used to identify the best levels for each parameter.

Findings

Colorimetry measurements showed significant color shifts in PP samples and no shifts in PETG samples upon pullout testing. The incorporation of PAni content and electrical conductivity were, respectively, 41% and 571% higher for PETG in comparison to PP. Upon coating, the surface energy of both materials decreased. Additionally, the dynamic mechanical analysis test showed minimal influence of PAni over the dynamic mechanical properties of PETG. The parametric study indicated that only layer thickness and infill pattern had a significant influence on PAni incorporation and electrical conductivity of coated porous samples.

Originality/value

Current literature reports difficulties in incorporating PAni without affecting dimensional precision and feedstock stability. In situ, oxidative polymerization of Ani could overcome these limitations. However, its use as a functional post-processing of extrusion-based printed parts is a novelty.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2024

Ugur Mecid Dilberoglu, Ulas Yaman and Melik Dolen

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating…

Abstract

Purpose

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating smooth surfaces on FFF specimens and establish trends about specific parameters.

Design/methodology/approach

In this study, PLA and ABS samples fabricated by FFF are subjected to side milling in several experiments. Achievable surface quality is studied in relation to material properties, milling parameters, tooling and macrostructure. The surface finish is quantified using profile measurements of the processed surfaces. The study classifies the created chips into categories that can be used as criteria for the anticipated quality. Spectral analysis is used to examine the various surface formation modes. Thermal monitoring is used to track chip formation and surface temperature changes during the milling process.

Findings

This study reveals that effective heat dissipation through proper chip formation is vital for maintaining high surface quality. Recommended methodology demands using a tool with a substantial flute volume, using high positive rake and clearance angles and optimizing the feed-per-tooth and cutting speed. Disregarding these guidelines may cause the surface temperature to surpass the material’s glass transition, resulting in inferior quality characterized by viscous folding. For FFF thermoplastics, optimal milling can bring the average surface roughness down to the micron level.

Originality/value

This research contributes to the field by providing valuable guidance for achieving superior results in milling FFF parts. This study includes a concise summary of the theoretically relevant insights, presents verification of the key factors by qualitative analysis and offers optimal milling parameters for 3D-printed thermoplastics based on systematic experiments.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 27