Search results

1 – 10 of 19
Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 August 2024

Umar Farooq, Tao Liu, Ahmed Jan, Umer Farooq and Samina Majeed

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross…

Abstract

Purpose

In this study, we investigate the effects of an extended ternary hybrid Tiwari and Das nanofluid model on ethylene glycol flow, with a focus on heat transfer. Using the Cross non-Newtonian fluid model, we explore the heat transfer characteristics of this unique fluid in various applications such as pharmaceutical solvents, vaccine preservatives, and medical imaging techniques.

Design/methodology/approach

Our investigation reveals that the flow of this ternary hybrid nanofluid follows a laminar Cross model flow pattern, influenced by heat radiation and occurring around a stretched cylinder in a porous medium. We apply a non-similarity transformation to the nonlinear partial differential equations, converting them into non-dimensional PDEs. These equations are subsequently solved as ordinary differential equations (ODEs) using MATLAB’s bvp4c tools. In addition, the magnetic number in this study spans from 0 to 5, volume fraction of nanoparticles varies from 5% to 10%, and Prandtl number for EG as 204. This approach allows us to examine the impact of temperature on heat transfer and distribution within the fluid.

Findings

Graphical depictions illustrate the effects of parameters such as the Weissenberg number, porous parameter, Schmidt number, thermal conductivity parameter, Soret number, magnetic parameter, Eckert number, Lewis number, and Peclet number on velocity, temperature, concentration, and microorganism profiles. Our results highlight the significant influence of thermal radiation and ohmic heating on heat transmission, particularly in relation to magnetic and Darcy parameters. A higher Lewis number corresponds to faster heat diffusion compared to mass diffusion, while increases in the Soret number are associated with higher concentration profiles. Additionally, rapid temperature dissipation inhibits microbial development, reducing the microbial profile.

Originality/value

The numerical analysis of skin friction coefficients and Nusselt numbers in tabular form further validates our approach. Overall, our findings demonstrate the effectiveness of our numerical technique in providing a comprehensive understanding of flow and heat transfer processes in ternary hybrid nanofluids, offering valuable insights for various practical applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 May 2024

Ashish Paul, Bhagyashri Patgiri and Neelav Sarma

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The…

Abstract

Purpose

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The present research has been freshly displayed regarding the implementation of an engine oil-based Casson tri-hybrid nanofluid across a rotating disk in mass and heat transferal developments. The purpose of this study is to contemplate the attributes of the flowing tri-hybrid nanofluid by incorporating porosity effects and magnetization and velocity slip effects, viscous dissipation, radiating flux, temperature slip, chemical reaction and activation energy.

Design/methodology/approach

The articulated fluid flow is described by a set of partial differential equations which are converted into one set of higher-order ordinary differential equations (ODEs) by using convenient conversions. The numerical solution of this transformed set of ODEs has been spearheaded by using the effectual bvp4c scheme.

Findings

The acquired results show that the heat transmission rate for the Casson tri-hybrid nanofluid is intensified by, respectively, 9.54% and 11.93% when compared to the Casson hybrid nanofluid and Casson nanofluid. Also, the mass transmission rate for the Casson tri-hybrid nanofluid is augmented by 1.09% and 2.14%, respectively, when compared to the Casson hybrid nanofluid and Casson nanofluid.

Originality/value

The current investigation presents an educative response on how the flow profiles vary with changes in the inevitable flow parameters. As per authors’ knowledge, no such scrutinization has been carried out previously; therefore, our results are novel and unique.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 July 2024

A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…

Abstract

Purpose

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.

Design/methodology/approach

A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.

Findings

The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.

Originality/value

Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 August 2024

H. Thameem Basha, Hyunju Kim and Bongsoo Jang

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or…

Abstract

Purpose

Thermal energy storage systems use thermal energy to elevate the temperature of a storage substance, enabling the release of energy during a discharge cycle. The storage or retrieval of energy occurs through the heating or cooling of either a liquid or a solid, without undergoing a phase change, within a sensible heat storage system. In a sensible packed bed thermal energy storage system, the structure comprises porous media that form the packed solid material, while fluid occupies the voids. Thus, a cavity, partially filled with a fluid layer and partially with a saturated porous layer, has become important in the investigation of natural convection heat transfer, carrying significant relevance within thermal energy storage systems. Motivated by these insights, the current investigation delves into the convection heat transfer driven by buoyancy and entropy generation within a partially porous cavity that is differentially heated, vertically layered and filled with a hybrid nanofluid.

Design/methodology/approach

The investigation encompasses two distinct scenarios. In the first instance, the porous layer is positioned next to the heated wall, while the opposite region consists of a fluid layer. In the second case, the layers switch places, with the fluid layer adjacent to the heated wall. The system of equations for fluid and porous media, along with appropriate initial and boundary conditions, is addressed using the finite difference method. The Tiwari–Das model is used in this investigation, and the viscosity and thermal conductivity are determined using correlations specific to spherical nanoparticles.

Findings

Comprehensive numerical simulations have been performed, considering controlling factors such as the Darcy number, nanoparticle volume fraction, Rayleigh number, bottom slit position and Hartmann number. The visual representation of the numerical findings includes streamlines, isotherms and entropy lines, as well as plots illustrating average entropy generation and the average Nusselt number. These representations aim to provide insight into the influence of these parameters across a spectrum of scenarios.

Originality/value

The computational outcomes indicate that with an increase in the Darcy number, the addition of 2.5% magnetite nanoparticles to the GO nanofluid results in an enhanced heat transfer rate, showing increases of 0.567% in Case 1 and 3.894% in Case 2. Compared with Case 2, Case 1 exhibits a 59.90% enhancement in heat transfer within the enclosure. Positioning the porous layer next to the partially cooled wall significantly boosts the average total entropy production, showing a substantial increase of 11.36% at an elevated Rayleigh number value. Positioning the hot slit near the bottom wall leads to a reduction in total entropy generation by 33.20% compared to its placement at the center and by 33.32% in comparison to its proximity to the top wall.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 September 2024

Sami Ul Haq, Muhammad Bilal Ashraf and Arooj Tanveer

The main focus is to provide a non-similar solution for the magnetohydrodynamic (MHD) flow of Casson fluid over a curved stretching surface through the novel technique of the…

Abstract

Purpose

The main focus is to provide a non-similar solution for the magnetohydrodynamic (MHD) flow of Casson fluid over a curved stretching surface through the novel technique of the artificial intelligence (AI)-based Lavenberg–Marquardt scheme of an artificial neural network (ANN). The effects of joule heating, viscous dissipation and non-linear thermal radiation are discussed in relation to the thermal behavior of Casson fluid.

Design/methodology/approach

The non-linear coupled boundary layer equations are transformed into a non-linear dimensionless Partial Differential Equation (PDE) by using a non-similar transformation. The local non-similar technique is utilized to truncate the non-similar dimensionless system up to 2nd order, which is treated as coupled ordinary differential equations (ODEs). The coupled system of ODEs is solved numerically via bvp4c. The data sets are constructed numerically and then implemented by the ANN.

Findings

The results indicate that the non-linear radiation parameter increases the fluid temperature. The Casson parameter reduces the fluid velocity as well as the temperature. The mean squared error (MSE), regression plot, error histogram, error analysis of skin friction, and local Nusselt number are presented. Furthermore, the regression values of skin friction and local Nusselt number are obtained as 0.99993 and 0.99997, respectively. The ANN predicted values of skin friction and the local Nusselt number show stability and convergence with high accuracy.

Originality/value

AI-based ANNs have not been applied to non-similar solutions of curved stretching surfaces with Casson fluid model, with viscous dissipation. Moreover, the authors of this study employed Levenberg–Marquardt supervised learning to investigate the non-similar solution of the MHD Casson fluid model over a curved stretching surface with non-linear thermal radiation and joule heating. The governing boundary layer equations are transformed into a non-linear, dimensionless PDE by using a non-similar transformation. The local non-similar technique is utilized to truncate the non-similar dimensionless system up to 2nd order, which is treated as coupled ODEs. The coupled system of ODEs is solved numerically via bvp4c. The data sets are constructed numerically and then implemented by the ANN.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 September 2024

J. Jayaprakash, Vediyappan Govindan, S.S. Santra, S.S. Askar, Abdelaziz Foul, Susmay Nandi and Syed Modassir Hussain

Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid…

Abstract

Purpose

Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid nanoparticles to conventional liquids may greatly improve their thermal conductivity, according to the available evidence. This study aims to examine the influence of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. The investigation considers the effects of thermal radiation, Dufour and Soret.

Design/methodology/approach

The mathematical model is formulated based on the fundamental assumptions of mass, energy and momentum conservation. The implicit models are epitomized by a set of interconnected nonlinear partial differential equations, which include a suitable and comparable adjustment. The numerical solution to these equations is assessed for approximate convergence by the Runge−Kutta−Fehlberg method based on the shooting technique embedded with the MATLAB software.

Findings

The findings are presented through graphical representations, offering a visual exploration of the effects of various dynamic parameters on the flow field. These parameters encompass a wide range of factors, including radiation, thermal and Brownian diffusion parameters, Eckert, Lewis and Soret numbers, magnetic parameters, Maxwell fluid parameters, Darcy numbers, thermal and solutal buoyancy factors, Dufour and Prandtl numbers. Notably, the authors observed that nanoparticles with a spherical shape exerted a significant influence on the stream function, highlighting the importance of nanoparticle geometry in fluid dynamics. Furthermore, the analysis revealed that temperature profiles of nanomaterials were notably affected by their shape factor, while concentration profiles exhibited an opposite trend, providing valuable insights into the behavior of nanofluids in porous media.

Originality/value

A distinctive aspect of the research lies in its novel exploration of the impact of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. By considering variables such as solar radiation, external magnetic flux, thermal and Brownian diffusion parameters and nanoparticle shape factor, the authors ventured into uncharted territory within the realm of fluid dynamics. These variables, despite their significant relevance, have not been extensively studied in previous research, thus underscoring the originality and value of the authors’ contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 September 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib, S.H.A.M. Shah, Anuar Ishak and Taseer Muhammad

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To…

Abstract

Purpose

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To track changes in mass deposition, the effect of particle thermophoresis is therefore seen in a mixed convective flow of Williamson hybrid nanofluids upon a stretching/shrinking sheet.

Design/methodology/approach

The PDEs are transformed into ordinary differential equations (ODEs) using the similarity technique and then the bvp4c solver is employed for the altered transformed equations. The main factors influencing the heat, mass and flow profiles are displayed graphically.

Findings

The findings imply that the larger effects of the thermophoretic parameter cause the mass transfer rate to drop for both solutions. In addition, the suggested hybrid nanoparticles significantly increase the heat transfer rate in both outcomes. Hybrid nanoparticles work well for producing the most energy possible. They are essential in causing the flow to accelerate at a high pace.

Practical implications

The consistent results of this analysis have the potential to boost the competence of thermal energy systems.

Originality/value

It has not yet been attempted to incorporate hybrid nanofluids and thermophoretic particle deposition impact across a vertical stretching/shrinking sheet subject to double-diffusive mixed convection flow in a Williamson model. The numerical method has been validated by comparing the generated numerical results with the published work.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 July 2024

Mohamed Kezzar, Nabil Talbi, Saeed Dinarvand, Sanatan Das, Mohamed Rafik Sari, Samia Nasr and Ali Akhlaghi Mozaffar

This paper aims to model and analyze Jeffery Hamel’s channel flow with the magnetohydrodynamics second-grade hybrid nanofluid. Considering the importance of studying the velocity…

Abstract

Purpose

This paper aims to model and analyze Jeffery Hamel’s channel flow with the magnetohydrodynamics second-grade hybrid nanofluid. Considering the importance of studying the velocity slip and temperature jump in the boundary conditions of the flow, which leads to results close to reality, this paper intends to analyze the mentioned topic in the convergent and divergent channels that have significant applications.

Design/methodology/approach

The examination is conducted on a EG-H_2 O <30%–70%> base fluid that contains hybrid nanoparticles (i.e. SWCNT-MWCNT). To ensure comprehensive results, this study also considers the effects of thermal radiation, thermal sink/source, rotating convergent-divergent channels and magnetic fields. Initially, the governing equations are formulated in cylindrical coordinates and then simplified to ordinary differential equations through appropriate transformations. These equations are solved using the Explicit Runge–Kutta numerical method, and the results are compared with previous studies for validation.

Findings

After the validation, the effect of the governing parameters on the temperature and velocity of the second-grade hybrid nanofluid has been investigated by means of various and comprehensive contours. In the following, the issue of entropy generation and its related graphical results for this problem is presented. The mentioned contours and graphs accurately display the influence of problem parameters, including velocity slip and temperature jump. Besides, when thermal radiation is introduced (Rd = +0.1 and Rd = +0.2), entropy generation in convergent-divergent channels decreases by 7% and 14%, respectively, compared to conditions without thermal radiation (Rd = 0). Conversely, increasing the thermal sink/source from 0 to 4 leads to an 8% increase in entropy generation at Q = 2 and a 17% increase at Q = 4 in both types of channels. The details of the analysis of contours and the entropy generation results are fully mentioned in the body of the paper.

Originality/value

There are many studies on convergent and divergent channels, but this study comprehensively investigates the effects of velocity slip and temperature jump and certainly, this geometry with the specifications presented in this paper has not been explored before. Among the other distinctive features of this paper compared to previous works, the authors can mention the presentation of velocity and temperature results in the form of contours, which makes the physical analysis of the problem simpler.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 August 2024

Muhammad Sohail, Esha Rafique and Kamaleldin Abodayeh

This investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those…

Abstract

Purpose

This investigation delves into the rationale behind the preferential applicability of the non-Newtonian nanofluid model over alternative frameworks, particularly those incorporating porous medium considerations. The study focuses on analyzing the mass and heat transfer characteristics inherent in the Williamson nanofluid’s non-Newtonian flow over a stretched sheet, accounting for influences such as chemical reactions, viscous dissipation, magnetic field and slip velocity. Emphasis is placed on scenarios where the properties of the Williamson nanofluid, including thermal conductivity and viscosity, exhibit temperature-dependent variations.

Design/methodology/approach

Following the use of the OHAM approach, an analytical resolution to the proposed issue is provided. The findings are elucidated through the construction of graphical representations, illustrating the impact of diverse physical parameters on temperature, velocity and concentration profiles.

Findings

Remarkably, it is discerned that the magnetic field, viscous dissipation phenomena and slip velocity assumption significantly influence the heat and mass transmission processes. Numerical and theoretical outcomes exhibit a noteworthy level of qualitative concurrence, underscoring the robustness and reliability of the non-Newtonian nanofluid model in capturing the intricacies of the studied phenomena.

Originality/value

Available studies show that no work on the Williamson model is conducted by considering viscous dissipation and the MHD effect past over an exponentially stretched porous sheet. This contribution fills this gap.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 19