Search results

1 – 10 of 76
Article
Publication date: 25 January 2023

Kashif Ishfaq, Zafar Abas, M. Saravana Kumar and Muhammad Arif Mahmood

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional…

Abstract

Purpose

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional techniques reach technological boundaries. Ultrasonic additive manufacturing (UAM) uses mechanical vibrations to join similar or dissimilar metals in three-dimensional assemblies. This hybrid fabrication method got attention due to minimum scrap and near-net-shape products.

Design/methodology/approach

This paper reviews significant UAM areas in process parameters such as pressure force, amplitude, weld speed and temperature. These process parameters used in different studies by researchers are compared and presented in tabular form. UAM process improvements and understanding of microstructures have been reported. This review paper also enlightens current challenges in the UAM process, process improvement methods such as heat treatment methods, foil-to-foil overlap and sonotrode surface roughness to increase the bond quality of welded parts.

Findings

Results showed that UAM could solve various problems and produce net shape products. It is concluded that process parameters such as pressure, weld speed, amplitude and temperature greatly influence weld quality by UAM. Post-weld heat treatment methods have been recommended to optimize the mechanical strength of ultrasonically welded joints process parameters. It has been found that the tension force is vital for the deformation of the pre-machined structures and for the elongation of the foil during UAM bonding. It is recommended to critically investigate the mechanical properties of welded parts with standard test procedures.

Originality/value

This study compiles relevant research and findings in UAM. The recent progress in UAM is presented in terms of material type, process parameters and process improvement, along with key findings of the particular investigation. The original contribution of this paper is to identify the research gaps in the process parameters of ultrasonic consolidation.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2024

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Kumar Sachdeva

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

47

Abstract

Purpose

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

Design/methodology/approach

For the series and parallel configuration of PU, a mathematical model based on the intuitionistic fuzzy Lambda–Tau (IFLT) approach was developed in order to calculate various reliability parameters at various spreads. For determining membership and non-membership function-based reliability parameters for the top event, AND/OR gate transitions expression was employed.

Findings

For 15%–30% spread, unit’s availability for the membership function falls by 0.006442%, and it falls even more by 0.014907% with an increase in spread from 30% to 45%. In contrast, for 15%–30% spread, the availability of non-membership function-based systems reduces by 0.007491% and further diminishes. Risk analysis has presented applying an emerging approach called intuitionistic fuzzy failure mode and effect analysis (IFFMEA). For each of the stated failure causes, the output values of the intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED)-based IFFMEA have been tabulated. Failure causes like HP1, MT6, FB9, EL16, DR23, GR27, categorized under subsystems, namely hopper, motor, fluidized bed dryer, distributor, grader and bin, respectively, with corresponding IFFMEA output scores 1.0975, 1.0190, 0.8543, 1.0228, 0.9026, 1.0021, were the most critical one to contribute in the system’s failure.

Research limitations/implications

The limitation of the proposed framework lies in the fact that the results obtained for both reliability and risk aspects mainly depend on the correctness of raw data provided by the experts. Also, an approximate model of PU is obtained from plant experts to carry performance analysis, and hence more attention is required in constructing the model. Under IFLT, reliability parameters of PU have been calculated at various spreads to study and analyse the failure behaviour of the unit for both membership and non-membership function in the IFS of [0.6,0.8]. For both membership- and non-membership-based results, availability of the considered system shows decreasing trend. To improve the performance of the considered system, risk assessment was carried using IFFMEA technique, ranking all the critical failure causes against IFHWED score value, on which more attention should be paid so as to avoid sudden failure of unit.

Social implications

The livelihood of millions of farmers and workers depends on sugar industries. So perpetual running of these industries is very important from this viewpoint. On the basis of findings of reliability parameters, the maintenance manager could frame a correct maintenance policy for long-run availability of the sugar mills. This long-run availability will generate revenue, which, in turn, will ensure the livelihood of the farmers.

Originality/value

Mathematical modelling of the considered unit has been done applying basic expressions of AND/OR gate. IFTOPSIS approach has been implemented for ranking result comparison obtained under IFFMEA approach. Eventually, sensitivity analysis was also presented to demonstrate the stability of ranking of failure causes of PU.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 14 November 2023

S. Raja Balasaraswathi and Jonalee D. Bajpai

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the…

Abstract

Purpose

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the apparel endues. The purpose of this study is to explore the application of ultrasonic welding in apparel by analyzing the impacts of different parameters.

Design/methodology/approach

This study analyzed the influence of ultrasonic welding parameters, including pressure, welding speed and ultrasonic power on the seam performances (seam strength, seam bursting strength, seam thickness and seam stiffness). The parameters are optimized using Box–Behnken experimental design to achieve better seam performances.

Findings

The properties of ultrasonic seams are influenced by welding and fabric properties. Ultrasonically welded seams showed better performances in the case of comfort properties of seams, whereas the functional properties are lesser compared to conventional seams.

Originality/value

The findings of the research clearly outline the level of influence of different parameters on the performance of the ultrasonically welded seams in knitted fabrics, which can greatly help in applying ultrasonic welding manufacturing methods in apparel manufacturing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 March 2024

Taotao Jin, Xiuhui Cui, Chuanyue Qi and Xinyu Yang

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

26

Abstract

Purpose

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

Design/methodology/approach

The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.

Findings

The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.

Practical implications

Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.

Originality/value

The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 28 March 2023

Xiaokun Zhou, Suming Xie, Maosheng He, Tingting Fu and Qifeng Yu

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Abstract

Purpose

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Design/methodology/approach

Based on traditional aluminium alloy doors, a new type of honeycomb composite material was developed. Tests were conducted to determine the honeycomb compression resistance, honeycomb and skin shear performance, plate bending, thermal conductivity and environmental protection. Eight doors were developed based on the full-side open structure, and static strength and stiffness analyses were performed simultaneously. To solve door vibration problems, modal analysis and test were carried out.

Findings

The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The first–sixth-order test mode of the door was increased by more than 14% compared with existing aluminium alloy doors.

Originality/value

A new type of honeycomb composite material was used in this study. The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The 1st-to-6th order test mode of the door was increased by more than 14% compared with the existing aluminium alloy door.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 February 2023

Martin Karlsson, Fredrik Bagge Carlson, Martin Holmstrand, Anders Robertsson, Jeroen De Backer, Luisa Quintino, Eurico Assuncao and Rolf Johansson

This study aims to enable robotic friction stir welding (FSW) in practice. The use of robots has hitherto been limited, because of the large contact forces necessary for FSW…

Abstract

Purpose

This study aims to enable robotic friction stir welding (FSW) in practice. The use of robots has hitherto been limited, because of the large contact forces necessary for FSW. These forces are detrimental for the position accuracy of the robot. In this context, it is not sufficient to rely on the robot’s internal sensors for positioning. This paper describes and evaluates a new method for overcoming this issue.

Design/methodology/approach

A closed-loop robot control system for seam-tracking control and force control, running and recording data in real-time operation, was developed. The complete system was experimentally verified. External position measurements were obtained from a laser seam tracker and deviations from the seam were compensated for, using feedback of the measurements to a position controller.

Findings

The proposed system was shown to be working well in overcoming position error. The system is flexible and reconfigurable for batch and short production runs. The welds were free of defects and had beneficial mechanical properties.

Research limitations/implications

In the experiments, the laser seam tracker was used both for control feedback and for performance evaluation. For evaluation, it would be better to use yet another external sensor for position measurements, providing ground truth.

Practical implications

These results imply that robotic FSW is practically realizable, with the accuracy requirements fulfilled.

Originality/value

The method proposed in this research yields very accurate seam tracking as compared to previous research. This accuracy, in turn, is crucial for the quality of the resulting material.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 February 2024

Yuhan Tang, Yuedong Wang, Jiayu Liu, Boya Tian, Qi Dong, Ziwei He and Jiayi Wen

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in…

Abstract

Purpose

In order to extend the application of the original octagonal Goodman–Smith fatigue limit diagram, which is commonly used for the evaluation of structure fatigue stress in engineering, a modification of it is proposed for the structure made of S355 steel (commonly used in high-speed electric multiple units (EMUs) bogie frame).

Design/methodology/approach

The modification is made based on Deutscher Verband für Schweißen und verwandte Verfahren e. V. (DVS) 1612 standard and the γ-P-S-N curve, with consideration of the fatigue evaluation requirements of different survival rates and confidence levels. The verification of the modification is performed for three welded joints and for the comparison with the experimental data.

Findings

The results indicate that the design survival rate, the design safety margin and the fatigue stress evaluation of welded joint types are all improved by using the modified diagram.

Originality/value

There are relatively few studies on modifying octagonal Goodman–Smith fatigue limit diagram. In this paper, a modified diagram is proposed and applied in order to ensure the safety and durability of key welded structures of rail vehicles.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 September 2022

Neeraj Yadav, Neda Sadeghi and Julian Kang

Tactile communication that relies on the human sense of touch replicated using vibration motors is increasingly being explored for seamless communication on construction jobsite…

Abstract

Purpose

Tactile communication that relies on the human sense of touch replicated using vibration motors is increasingly being explored for seamless communication on construction jobsite. However, the technological efficacy cannot secure the users’ acceptability of the tactile communication devices. This study aims to assess the factors affecting the wearability of such a portable tactile device based on the responses from practicing professionals.

Design/methodology/approach

The investigation adapted a three-step phenomenological interviewing approach to seek feedback from construction personnel in Texas, the USA, regarding the viability of wearable tactile communication. The interviewees expressed various opinions about the on-body placement upon exposure to a portable tactile feedback prototype developed for this study, which was used to derive inferences regarding the factors affecting its on-field acceptability.

Findings

All the participants of the round-table study (11 out of 11) considered tactile feedback as a viable mode of communication on construction jobsite. Seven professionals supported the integration of a tactile device with the hard hat, whereas the rest preferred tactile eyeglasses. Weatherability, rechargeability, traceability, safety and social receptivity were identified as the major factors affecting the on-body placement of the wearable tactile communication device.

Originality/value

This paper presents a roadmap to gain construction industry opinion on the factors that can affect the on-body placement of a wearable tactile communication device. The five aforementioned factors impacting tactile communication acceptability were used to evaluate 10 potential on-body placements. The findings have implications for research and development of wearable tactile devices and the subsequent acceptability of such a device on the jobsite.

Article
Publication date: 25 April 2023

Veysel Erturun and Durmuş Odabaş

The purpose of this study is to investigate the microstructure of fretting wear behavior in 6061-T6 aluminum alloy. The fretting wear of blind riveted lap joints of 6061-T6…

Abstract

Purpose

The purpose of this study is to investigate the microstructure of fretting wear behavior in 6061-T6 aluminum alloy. The fretting wear of blind riveted lap joints of 6061-T6 aluminum alloy plates, which are widely used in aircraft construction, was investigated. Fretting damages were investigated between the contact surface of the plates and between the plate and the rivet contact surface.

Design/methodology/approach

Experiments were carried out using a computer controlled Instron testing machine with 200 kN static and 100 kN dynamic load capacity. Max package computer program was used for the control of the experiments. Fretting scars, width of wear scars, microstructure was investigated by metallographic techniques and scanning electron microscopy.

Findings

It was found that fretting damages were occurred between the plates contacting surface and between the plate and rivet contact surface. As load and cycles increased, fretting scars increased. Fretting wear initially begins with metal-to-metal contact. Then, the formed metallic wear particles are hardened by oxidation. These hard particles spread between surfaces, causing three-body fretting wear. Fretting wear surface width increases with increasing load and number of cycles.

Originality/value

The useful life of many tribological joints is limited by wear or deterioration of the fretting components due to fretting by oscillating relative displacements of the friction surfaces. Such displacements are caused by vibrations, reciprocating motion, periodic bending or twisting of the mating component, etc. Fretting also tangibly reduces the surface layer quality and produces increased surface roughness, micropits, subsurface microphone.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Access

Year

Last 12 months (76)

Content type

Article (76)
1 – 10 of 76