Search results

1 – 10 of 101
Article
Publication date: 9 June 2023

Zimou Tang, Min Yang, Jianxiong Xiao, Zheng Shen, Liming Tang and Jibin Wang

This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.

Abstract

Purpose

This paper aims to present an engineering computational method for fatigue life evaluation of welded structures on large-scale equipment under random vibration load.

Design/methodology/approach

Based on a case study of the traction transformers, virtual fatigue test (VFT) was proposed via numerical simulation approach. Static analysis was conducted to identify the risky zone and then dynamic response of the risky welds under random vibration load was calculated based on frequency-domain structural stress method (FDSSM) theory, life distribution and associated survivability at various locations of the structure were obtained. Structural modification was finally performed according to the evaluation results. Moreover, experimental test was carried out and compared with the virtual test result.

Findings

By applying the virtual test, fatigue life of the complex welded structures on large-scale equipment can be accurately and efficiently obtained considering dynamic effect under random vibration load. Meanwhile, risky welds can be directly determined and targeted modification scheme can be accordingly concluded. Validity of the VFT result was proved by comparing with the experimental test.

Originality/value

The proposed method can help obtain equivalent structural stress and fatigue life distribution of the welded structure at any position with various survivability and make quantitative evaluation on the life-extending effect of the structural modification. This method shows significant cost and efficiency advantages over experimental test during design stage of the large-scale structures in numerous manufacturing industries.

Article
Publication date: 20 January 2023

Yuvaraj K.P., Joshua Gnana Sekaran J. and Shanmugam A.

The purpose of this paper is to investigate the impact of ultrasonic vibration (UV) and tool pin profile on mechanical properties and microstructural behaviour of AA7075-T651 and…

Abstract

Purpose

The purpose of this paper is to investigate the impact of ultrasonic vibration (UV) and tool pin profile on mechanical properties and microstructural behaviour of AA7075-T651 and AA6061-T6 joints was analysed.

Design/methodology/approach

The joints were fabricated using three different tool pin profiles such as cylindrical, square and triangle. For each tool pin profile, two different UV powers of 1.5 kW and 2 kW were used.

Findings

On both the advancing and retreating sides of the weld, the thermo-mechanically affected zone has the lowest microhardness. In all joints, the tensile fracture locations match to the minimum hardness values. Field emission scanning electron microscope fractography of tensile tested specimens reveals heterogeneous modes of brittle, shear and ductile fracture. Three-point bending analysis was performed to determine the ductility and soundness of the weld joint. The acoustic softening effect of UV, as well as the static and dynamic ratio of tool pin profile, plays an important role in determining the material flow and mechanical behaviour of the joint.

Practical implications

Dissimilar aluminium joining fascinates many applications like aircraft, aerospace, automobiles, ship building and electronics, where fusion welding is a very intricate process because of the deviation in its physical and chemical properties.

Originality/value

From this study investigation, it is found that the square pin profiled tool with 2 kW UV power produces metallurgical defect-free and mechanically sound weld with maximum tensile strength, hardness and bending load of 297 MPa, 151HV and 3.82 kN, respectively.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 January 2023

Kashif Ishfaq, Zafar Abas, M. Saravana Kumar and Muhammad Arif Mahmood

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional…

Abstract

Purpose

This study aims to outline the current challenges in ultrasonic additive manufacturing (AM). AM has revolutionized manufacturing and offers possible solutions when conventional techniques reach technological boundaries. Ultrasonic additive manufacturing (UAM) uses mechanical vibrations to join similar or dissimilar metals in three-dimensional assemblies. This hybrid fabrication method got attention due to minimum scrap and near-net-shape products.

Design/methodology/approach

This paper reviews significant UAM areas in process parameters such as pressure force, amplitude, weld speed and temperature. These process parameters used in different studies by researchers are compared and presented in tabular form. UAM process improvements and understanding of microstructures have been reported. This review paper also enlightens current challenges in the UAM process, process improvement methods such as heat treatment methods, foil-to-foil overlap and sonotrode surface roughness to increase the bond quality of welded parts.

Findings

Results showed that UAM could solve various problems and produce net shape products. It is concluded that process parameters such as pressure, weld speed, amplitude and temperature greatly influence weld quality by UAM. Post-weld heat treatment methods have been recommended to optimize the mechanical strength of ultrasonically welded joints process parameters. It has been found that the tension force is vital for the deformation of the pre-machined structures and for the elongation of the foil during UAM bonding. It is recommended to critically investigate the mechanical properties of welded parts with standard test procedures.

Originality/value

This study compiles relevant research and findings in UAM. The recent progress in UAM is presented in terms of material type, process parameters and process improvement, along with key findings of the particular investigation. The original contribution of this paper is to identify the research gaps in the process parameters of ultrasonic consolidation.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2024

Dinesh Kumar Kushwaha, Dilbagh Panchal and Anish Kumar Sachdeva

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

46

Abstract

Purpose

An integrated intuitionistic fuzzy (IF) modelling-based framework for examining the performance analysis of a packaging unit (PU) in three different stages has been proposed.

Design/methodology/approach

For the series and parallel configuration of PU, a mathematical model based on the intuitionistic fuzzy Lambda–Tau (IFLT) approach was developed in order to calculate various reliability parameters at various spreads. For determining membership and non-membership function-based reliability parameters for the top event, AND/OR gate transitions expression was employed.

Findings

For 15%–30% spread, unit’s availability for the membership function falls by 0.006442%, and it falls even more by 0.014907% with an increase in spread from 30% to 45%. In contrast, for 15%–30% spread, the availability of non-membership function-based systems reduces by 0.007491% and further diminishes. Risk analysis has presented applying an emerging approach called intuitionistic fuzzy failure mode and effect analysis (IFFMEA). For each of the stated failure causes, the output values of the intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED)-based IFFMEA have been tabulated. Failure causes like HP1, MT6, FB9, EL16, DR23, GR27, categorized under subsystems, namely hopper, motor, fluidized bed dryer, distributor, grader and bin, respectively, with corresponding IFFMEA output scores 1.0975, 1.0190, 0.8543, 1.0228, 0.9026, 1.0021, were the most critical one to contribute in the system’s failure.

Research limitations/implications

The limitation of the proposed framework lies in the fact that the results obtained for both reliability and risk aspects mainly depend on the correctness of raw data provided by the experts. Also, an approximate model of PU is obtained from plant experts to carry performance analysis, and hence more attention is required in constructing the model. Under IFLT, reliability parameters of PU have been calculated at various spreads to study and analyse the failure behaviour of the unit for both membership and non-membership function in the IFS of [0.6,0.8]. For both membership- and non-membership-based results, availability of the considered system shows decreasing trend. To improve the performance of the considered system, risk assessment was carried using IFFMEA technique, ranking all the critical failure causes against IFHWED score value, on which more attention should be paid so as to avoid sudden failure of unit.

Social implications

The livelihood of millions of farmers and workers depends on sugar industries. So perpetual running of these industries is very important from this viewpoint. On the basis of findings of reliability parameters, the maintenance manager could frame a correct maintenance policy for long-run availability of the sugar mills. This long-run availability will generate revenue, which, in turn, will ensure the livelihood of the farmers.

Originality/value

Mathematical modelling of the considered unit has been done applying basic expressions of AND/OR gate. IFTOPSIS approach has been implemented for ranking result comparison obtained under IFFMEA approach. Eventually, sensitivity analysis was also presented to demonstrate the stability of ranking of failure causes of PU.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 14 November 2023

S. Raja Balasaraswathi and Jonalee D. Bajpai

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the…

Abstract

Purpose

Ultrasonic welding is an emerging apparel manufacturing technique. However, the applications are widely explored in the field of technical textiles, with less exploration in the apparel endues. The purpose of this study is to explore the application of ultrasonic welding in apparel by analyzing the impacts of different parameters.

Design/methodology/approach

This study analyzed the influence of ultrasonic welding parameters, including pressure, welding speed and ultrasonic power on the seam performances (seam strength, seam bursting strength, seam thickness and seam stiffness). The parameters are optimized using Box–Behnken experimental design to achieve better seam performances.

Findings

The properties of ultrasonic seams are influenced by welding and fabric properties. Ultrasonically welded seams showed better performances in the case of comfort properties of seams, whereas the functional properties are lesser compared to conventional seams.

Originality/value

The findings of the research clearly outline the level of influence of different parameters on the performance of the ultrasonically welded seams in knitted fabrics, which can greatly help in applying ultrasonic welding manufacturing methods in apparel manufacturing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 March 2024

Taotao Jin, Xiuhui Cui, Chuanyue Qi and Xinyu Yang

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

16

Abstract

Purpose

This paper aims to develop a specific type of mobile nonrigid support friction stir welding (FSW) robot, which can adapt to aluminum alloy trucks for rapid online repair.

Design/methodology/approach

The friction stir welding robot is designed to complete online repair according to the surface damage of large aluminum alloy trucks. A rotatable telescopic arm unit and a structure for a cutting board in the shape of a petal that was optimized by finite element analysis are designed to give enough top forging force for welding to address the issues of inadequate support and significant deformation in the repair process.

Findings

The experimental results indicate that the welding robot is capable of performing online surface repairs for large aluminum alloy trucks without rigid support on the backside, and the welding joint exhibits satisfactory performance.

Practical implications

Compared with other heavy-duty robotic arms and gantry-type friction stir welding robots, this robot can achieve online welding without disassembling the vehicle body, and it requires less axial force. This lays the foundation for the future promotion of lightweight equipment.

Originality/value

The designed friction stir welding robot is capable of performing online repairs without dismantling the aluminum alloy truck body, even in situations where sufficient upset force is unavailable. It ensures welding quality and exhibits high efficiency. This approach is considered novel in the field of lightweight online welding repairs, both domestically and internationally.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 27 February 2024

Zhiyu Dong, Ruize Qin, Ping Zou, Xin Yao, Peng Cui, Fan Zhang and Yizhou Yang

The occupational health risk associated with the production of prefabricated concrete components is often overlooked. This paper will use a damage assessment and cyclic mitigation…

33

Abstract

Purpose

The occupational health risk associated with the production of prefabricated concrete components is often overlooked. This paper will use a damage assessment and cyclic mitigation (DACM) model to provide individualized exposure risk assessment and corresponding mitigation management measures for workers who are being exposed.

Design/methodology/approach

The DACM model is proposed based on the concept of life cycle assessment (LCA). The model uses Monte-Carlo simulation for uncertainty risk assessment, followed by quantitative damage assessment using disability-adjusted life year (DALY). Lastly, sensitivity analysis is used to identify the parameters with the greatest impact on health risks.

Findings

The results show that the dust concentration is centered around the mean, and the fitting results are close to normal distribution, so the mean value can be used to carry out the calculation of risk. However, calculations using the DACM model revealed that there are still some work areas at risk. DALY damage is most severe in concrete production area. Meanwhile, the inhalation rate (IR), exposure duration (ED), exposure frequency (EF) and average exposure time (AT) showed greater impacts based on the sensitivity analysis.

Originality/value

Based on the comparison, the DACM model can determine that the potential occupational health risk of prefabricated concrete component (PC) factory and the risk is less than that of on-site construction. It synthesizes field research and simulation to form the entire assessment process into a case-base system with the depth of the cycle, which allows the model to be continuously adjusted to reduce the occupational health damage caused by production pollution exposure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 March 2023

Xiaokun Zhou, Suming Xie, Maosheng He, Tingting Fu and Qifeng Yu

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Abstract

Purpose

This study aims to reduce the weight of the door, improve the operating efficiency and ensure the safety of vehicle operation.

Design/methodology/approach

Based on traditional aluminium alloy doors, a new type of honeycomb composite material was developed. Tests were conducted to determine the honeycomb compression resistance, honeycomb and skin shear performance, plate bending, thermal conductivity and environmental protection. Eight doors were developed based on the full-side open structure, and static strength and stiffness analyses were performed simultaneously. To solve door vibration problems, modal analysis and test were carried out.

Findings

The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The first–sixth-order test mode of the door was increased by more than 14% compared with existing aluminium alloy doors.

Originality/value

A new type of honeycomb composite material was used in this study. The test results showed that the weight of the door was reduced by more than 40% whilst ensuring the strength and stiffness of the vehicle. The 1st-to-6th order test mode of the door was increased by more than 14% compared with the existing aluminium alloy door.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 101