Search results

1 – 10 of 24
Article
Publication date: 29 April 2024

Zhuofeng Li, Shide Mo, Kaiwen Yang and Yunmin Chen

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Abstract

Purpose

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Design/methodology/approach

An arbitrary Lagrangian–Eulerian scheme is adopted to preserve the quality of mesh throughout the numerical simulation. Simplified methods of layered penetration and coupled pore pressure analysis of cone penetration have been proposed and verified by previous studies. The investigation is then extended by the present work to study the cone penetration test in a two-layered clay profile assumed to be homogeneous with the modified Cam clay model.

Findings

The reduction of the range of pore pressure with decreasing PF will cause a decrease of the sensing distance. The PF of the underlying soil is one of the factors that determine the development distance. The interface can be obtained by taking the position of the maximum curvature of the penetrometer resistance curve in the case of stiff clay overlying soft clay. In the case of soft clay overlying stiff clay, the interface locates at the maximum curvature of the penetrometer resistance curve above about 1.6D.

Research limitations/implications

The cone penetration analyses in this paper are conducted assuming smooth soil-cone contact.

Originality/value

A simplified method based on ALE in Abaqus/Explicit is proposed for layered penetration, which solves the problem of mesh distortion at the interface between two materials. The stiffness equivalent method is also proposed to couple pore pressure during cone penetration, which achieves efficient coupling of pore water pressure in large deformations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 April 2023

Amina Zahafi, Mohamed Hadid and Raouf Bencharif

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a…

Abstract

Purpose

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a straightforward calculation of foundations’ vertical vibrations. A rigid circular foundation shape resting on a nonhomogeneous half-space subjected to a vertical time-harmonic excitation is considered.

Design/methodology/approach

A simple model representing the soil–foundation system consists of a single degree of freedom (SDOF) system incorporating a lumped mass linked to a frequency-independent spring and dashpot. Besides that, an additional fictitious mass is incorporated into the SDOF system. Several numerical methods and mathematical techniques are used to identify each SDOF’s parameter: (1) the vertical component of the static and dynamic foundation impedance function is calculated. This dynamic interaction problem is solved by using a formulation combining the boundary element method and the thin layer method, which allows the simulation of any complex nonhomogeneous half-space configuration. After, one determines the static stiffness’s expression of the circular foundation resting on a nonhomogeneous half-space. (2) The system’s parameters (dashpot coefficient and fictitious mass) are calculated at the resonance frequency; and (3) using a curve fitting technique, the general formulas of the frequency-independent dashpot coefficients and additional fictitious mass are established.

Findings

Comparisons with other results from a rigorous formulation were made to verify the developed model’s accuracy; these are exceptional cases of the more general problems that can be addressed (problems like shallow or embedded foundations of arbitrary shape, other vibration modes, etc.).

Originality/value

In this new LPM, the impedance functions will no longer be needed. The engineer only needs a limited number of input parameters (geometrical and mechanical characteristics of the foundation and the soil). Moreover, a simple calculator is required (i.e. we do not need any sophisticated software).

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 April 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib and Anuar Ishak

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids…

Abstract

Purpose

A novel type of heat transfer fluid known as hybrid nanofluids is used to improve the efficiency of heat exchangers. It is observed from literature evidence that hybrid nanofluids outperform single nanofluids in terms of thermal performance. This study aims to address the stagnation point flow induced by Williamson hybrid nanofluids across a vertical plate. This fluid is drenched under the influence of mixed convection in a Darcy–Forchheimer porous medium with heat source/sink and entropy generation.

Design/methodology/approach

By applying the proper similarity transformation, the partial differential equations that represent the leading model of the flow problem are reduced to ordinary differential equations. For the boundary value problem of the fourth-order code (bvp4c), a built-in MATLAB finite difference code is used to tackle the flow problem and carry out the dual numerical solutions.

Findings

The shear stress decreases, but the rate of heat transfer increases because of their greater influence on the permeability parameter and Weissenberg number for both solutions. The ability of hybrid nanofluids to strengthen heat transfer with the incorporation of a porous medium is demonstrated in this study.

Practical implications

The findings may be highly beneficial in raising the energy efficiency of thermal systems.

Originality/value

The originality of the research lies in the investigation of the Darcy–Forchheimer stagnation point flow of a Williamson hybrid nanofluid across a vertical plate, considering buoyancy forces, which introduces another layer of complexity to the flow problem. This aspect has not been extensively studied before. The results are verified and offer a very favorable balance with the acknowledged papers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2023

Shoaib Ali, Imran Yousaf and Xuan Vinh Vo

This study examines the dynamics of the comovement and causal relationship between conventional (Bitcoin, Ethereum and Binance coin) and Islamic (OneGram, X8X token and HelloGold…

Abstract

Purpose

This study examines the dynamics of the comovement and causal relationship between conventional (Bitcoin, Ethereum and Binance coin) and Islamic (OneGram, X8X token and HelloGold) cryptocurrencies.

Design/methodology/approach

This study uses wavelet coherence approach to examine the time-varying lead-lag relationship between conventional and Islamic cryptocurrencies. Furthermore, the authors use BEKK-GARCH model to estimate the optimal weights, hedge ratio and hedging effectiveness in pre-COVID-19 and during the COVID-19 period.

Findings

The authors find no significant comovement in pre-COVID-19. However, the authors find significant positive comovement in conventional and Islamic cryptocurrencies at the beginning of the pandemic, and in most cases, conventional cryptocurrencies are leading. X8X and HelloGold have no/weak correlation with conventional cryptocurrencies, implying that investors can diversify the risk by making an Islamic and conventional cryptocurrencies portfolio. The authors also calculate the optimal weights, hedge ratio and hedging effectiveness using the BEKK-GARCH model. Based on the optimal weights, for the portfolios of conventional–Islamic cryptocurrencies, investors are suggested to increase their investment in Islamic cryptocurrencies during the COVID-19 than normal period. The results of hedge ratios show that hedging costs are higher during COVID-19 than before.

Practical implications

The findings of the paper offer several practical policy implications for investors, portfolio manager, Shariah advisors and policymakers pertaining to asset allocation, risk management, forecasting and diversification. Specifically, investors can maximize the risk adjusted returns of their conventional cryptocurrencies portfolio by adding some portions of Islamic cryptocurrencies. Considering the comovement is time-varying, investors/manager should adjust their investment strategies frequently. For the entrepreneurs in crypto-industry, it is advised to introduce new Islamic cryptocurrencies, as it has a huge growth potential because of their distinct features and performance.

Originality/value

This is the first study that explores the linkages between conventional and Islamic cryptocurrencies, therefore this study extends the literature of Islamic finance, stablecoins and cryptocurrencies in pre-COVID-19 and during COVID-19 period. The study results provide insights to conventional crypto investor on how to manage their portfolio during normal and turbulent period.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 7 March 2024

Minhaj Ali and Dervis Kirikkaleli

In order to achieve sustainable development objectives, safeguard the ecosystem, combat global warming and preserve biodiversity for a more sustainable and secure future, the…

Abstract

Purpose

In order to achieve sustainable development objectives, safeguard the ecosystem, combat global warming and preserve biodiversity for a more sustainable and secure future, the ecological footprint (EF) must be reduced. Therefore, embracing holistic methods, emphasizing renewable energy (RN) and environmental taxes (ET) is crucial. Therefore, the present study aims to capture the effect of ET and RN on EF in Germany.

Design/methodology/approach

To achieve this aim, the novel Fourier-based Autoregressive Distributive Lag (ADL) cointegration and the time and frequency-based connections among the variables are investigated in this work throughout the 1994–2021 time span using the wavelet analytic methods, including wavelet power spectrum (WPS) and wavelet coherence (WC) methods, respectively.

Findings

The study’s results express that (1) RN, ET and EF are cointegrated in the long run; (2) EF and RN have volatility; (3) RN use in Germany prevents environmental deterioration and (4) ET decreases EF.

Practical implications

The research findings imply that Germany needs rigorous environmental restrictions and enforcement of alternate energy sources for energy use plans and sustainable production objectives.

Originality/value

To the best of our knowledge, the effect of RN and ET on EF in Germany has not been comprehensively explored by using newly developed econometrics techniques and a single dataset. Therefore, the study provides important policy implementations for the German government and is also likely to open debate on the concept.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Open Access
Article
Publication date: 12 February 2024

Ivo Hristov, Matteo Cristofaro, Riccardo Camilli and Luna Leoni

This paper aims to (1) identify the different performance drivers (lead indicators) and outcome measures (lag indicators) investigated in the literature concerning the four…

Abstract

Purpose

This paper aims to (1) identify the different performance drivers (lead indicators) and outcome measures (lag indicators) investigated in the literature concerning the four balanced scorecard (BSC) perspectives in operations management (OM) contexts and (2) understand how performance drivers and outcome measures (and substantiated perspectives) are related.

Design/methodology/approach

We undertake a systematic literature review of the BSC literature in OM journals. From the final sample of 40 articles, performance drivers and outcome measures have been identified, and the relationships amongst them have been synthesised according to the system dynamics approach.

Findings

Findings show (1) the most relevant performance drivers and outcome measures within each BSC perspective, (2) their relationships, (3) how the perspectives are linked through the performance drivers and outcome measures and (4) how the different measures relate systemically. Accordingly, four causal loops amongst identified measures have been built, which – jointly considered – allowed for the creation of a dynamic strategy map for OM.

Originality/value

This study is the first one that provides a comprehensive and holistic view of how the different performance drivers and outcome measures within and between the four BSC perspectives in OM relate systemically, increasing the knowledge and understanding of scholars and practitioners.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 January 2024

Susovon Jana and Tarak Nath Sahu

This study is designed to examine the dynamic interrelationships between four cryptocurrencies (Bitcoin, Ethereum, Dogecoin and Cardano) and the Indian equity market…

Abstract

Purpose

This study is designed to examine the dynamic interrelationships between four cryptocurrencies (Bitcoin, Ethereum, Dogecoin and Cardano) and the Indian equity market. Additionally, the study seeks to investigate the potential safe haven, hedge and diversification uses of these digital currencies within the Indian equity market.

Design/methodology/approach

This study employs the wavelet approach to examine the time-varying volatility of the studied assets and the lead-lag relationship between stocks and cryptocurrencies. The authors execute the entire analysis using daily data from 1st October 2017 to 30th September 2023.

Findings

The result of the study shows that financial distress due to the pandemic and the Russian invasion of Ukraine have a negative effect on the Indian equities and cryptocurrency markets, escalating their price volatility. Also, the connectedness between the returns of stock and digital currency exhibits a strong positive relationship during periods of financial distress. Additionally, cryptocurrencies serve as a tool of diversification or hedging in the Indian equities markets during normal financial circumstances, but they do not serve as a diversifier or safe haven during periods of financial turmoil.

Originality/value

This study contributes to understanding the relationship between the Indian equity market and four cryptocurrencies using wavelet techniques in the time and frequency domains, considering both normal and crisis times. This can offer valuable insights into the potential of cryptocurrencies inside the Indian equities markets, mainly with respect to varying financial conditions and investment horizons.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 15 January 2024

F.D. Ayegbusi and A.S. Idowu

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of…

Abstract

Purpose

The purpose of this study is to investigate the effects of entropy generation of some embedded thermophysical properties on heat and mass transfer of pulsatile flow of non-Newtonian nanofluid flows between two porous parallel plates in the presence of Lorentz force are taken into account in this research.

Design/methodology/approach

The governing partial differential equations (PDEs) were nondimensionalized using suitable nondimensional quantities to transform the PDEs into a system of coupled nonlinear PDEs. The resulting equations are solved using the spectral relaxation method due to the effectiveness and accuracy of the method. The obtained velocity and temperature profiles are used to compute the entropy generation rate and Bejan number. The influence of various flow parameters on the velocity, temperature, entropy generation rate and Bejan number are discussed graphically.

Findings

The results indicate that the energy losses can be minimized in the system by choosing appropriate values for pertinent parameters; when thermal conductivity is increasing, this leads to the depreciation of entropy generation, and while this increment in thermal conductivity appreciates the Bejan number, the Eckert number on entropy generation and Bejan number, the graph shows that each time of increase in Eckert will lead to rising of entropy generation while this increase shows a reduction in Bejan number. To shed more light, these results were further demonstrated graphically. The current research was very well supported by prior literature works.

Originality/value

All results are presented graphically, and the results in this article are anticipated to be helpful in the area of engineering.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 March 2024

Daryl John Powell, Désirée A. Laubengaier, Guilherme Luz Tortorella, Henrik Saabye, Jiju Antony and Raffaella Cagliano

The purpose of this paper is to examine the digitalization of operational processes and activities in lean manufacturing firms and explore the associated learning implications…

Abstract

Purpose

The purpose of this paper is to examine the digitalization of operational processes and activities in lean manufacturing firms and explore the associated learning implications through the lens of cumulative capability theory.

Design/methodology/approach

Adopting a multiple-case design, we examine four cases of digitalization initiatives within lean manufacturing firms. We collected data through semi-structured interviews and direct observations during site visits.

Findings

The study uncovers the development of learning capabilities as a result of integrating lean and digitalization. We find that digitalization in lean manufacturing firms contributes to the development of both routinized and evolutionary learning capabilities in a cumulative fashion.

Originality/value

The study adds nuance to the limited theoretical understanding of the integration of lean and digitalization by showing how it cumulatively develops the learning capabilities of lean manufacturing firms. As such, the study supports the robustness of cumulative capability theory. We further contribute to research by offering empirical support for the cumulative nature of learning.

Details

International Journal of Operations & Production Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3577

Keywords

Access

Year

All dates (24)

Content type

Earlycite article (24)
1 – 10 of 24