Search results

1 – 10 of over 10000
Open Access
Article
Publication date: 4 November 2020

Alberto Moscatello, Anna Chiara Uggenti, Gaetano Iuso, Domenic D'Ambrosio, Gioacchino Cafiero, Raffaella Gerboni and Andrea Carpignano

The purpose of this paper is to present a procedure to design an experimental setup meant to validate an innovative approach for simulating, via computational fluid dynamics, a…

Abstract

Purpose

The purpose of this paper is to present a procedure to design an experimental setup meant to validate an innovative approach for simulating, via computational fluid dynamics, a high-pressure gas release from a rupture (e.g. on an offshore oil and gas platform). The design is based on a series of scaling exercises, some of which are anything but trivial.

Design/methodology/approach

The experimental setup is composed of a wind tunnel, the instrumented scaled (1:10) mock-up of an offshore platform and a gas release system. A correct scaling approach is necessary to define the reference speed in the wind tunnel and the conditions of the gas release to maintain similarity with respect to the real-size phenomena. The scaling of the wind velocity and the scaling of the gas release were inspired by the approach proposed by Hall et al. (1997): a dimensionless group was chosen to link release parameters, wind velocity and geometric scaling factor.

Findings

The theoretical scaling approaches for each different part of the setup were applied to the design of the experiment and some criticalities were identified, such as the existence of a set of case studies with some release parameters laying outside the applicability range of the developed scaling methodology, which will be further discussed.

Originality/value

The resulting procedure is one of a kind because it involves a multi-scaling approach because of the different aspects of the design. Literature supports for the different scaling theories but, to the best of the authors’ knowledge, fails to provide an integrated approach that considers the combined effects of scaling.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 December 2017

Iman Kardan, Alireza Akbarzadeh and Ali Mousavi Mohammadi

This paper aims to increase the safety of the robots’ operation by developing a novel method for real-time implementation of velocity scaling and obstacle avoidance as the two…

Abstract

Purpose

This paper aims to increase the safety of the robots’ operation by developing a novel method for real-time implementation of velocity scaling and obstacle avoidance as the two widely accepted safety increasing concepts.

Design/methodology/approach

A fuzzy version of dynamic movement primitive (DMP) framework is proposed as a real-time trajectory generator with imbedded velocity scaling capability. Time constant of the DMP system is determined by a fuzzy system which makes decisions based on the distance from obstacle to the robot’s workspace and its velocity projection toward the workspace. Moreover, a combination of the DMP framework with a human-like steering mechanism and a novel configuration of virtual impedances is proposed for real-time obstacle avoidance.

Findings

The results confirm the effectiveness of the proposed method in real-time implementation of the velocity scaling and obstacle avoidance concepts in different cases of single and multiple stationary obstacles as well as moving obstacles.

Practical implications

As the provided experiments indicate, the proposed method can effectively increase the real-time safety of the robots’ operations. This is achieved by developing a simple method with low computational loads.

Originality/value

This paper proposes a novel method for real-time implementation of velocity scaling and obstacle avoidance concepts. This method eliminates the need for modification of original DMP formulation. The velocity scaling concept is implemented by using a fuzzy system to adjust the DMP’s time constant. Furthermore, the novel impedance configuration makes it possible to obtain a non-oscillatory convergence to the desired path, in all degrees of freedom.

Details

Industrial Robot: An International Journal, vol. 45 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 2001

J. Mathiyarasu, C. Boopathi, P. Subramanian and N. Palaniswamy

The efficacy of antiscaling treatments under simulated flow conditions was studied by chronoamperometric technique. The effect of temperature and concentration on the scale

Abstract

The efficacy of antiscaling treatments under simulated flow conditions was studied by chronoamperometric technique. The effect of temperature and concentration on the scale forming behaviour of different compounds were also studied under the simulated flow conditions. In order to simulate the flow conditions a rotating disc electrode technique was employed. The mechanism of antiscaling behaviour of different chemicals was studied through electrochemical impedance spectroscopy. It was found that the flow velocity affected the efficiency of antiscalants. Polymer based compounds follow the growth modification adsorption mechanism, while compounds like EDTA and phosphonate follow nucleation modification absorption/chemisorption mechanism. Temperature and concentration of the scale forming compounds have a significant role in the scaling process, particularly at the low concentrations.

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 March 2018

Zhitao Yan, Yongli Zhong, William E. Lin, Eric Savory and Yi You

This paper examines various turbulence models for numerical simulation of a steady, two-dimensional (2-D) plane wall jet without co-flow using the commercial CFD software (ANSYS…

Abstract

Purpose

This paper examines various turbulence models for numerical simulation of a steady, two-dimensional (2-D) plane wall jet without co-flow using the commercial CFD software (ANSYS FLUENT 14.5). The purpose of this paper is to decide the most suitable and most economical method for steady, 2-D plane wall jet simulation.

Design/methodology/approach

Seven Reynolds-averaged Navier–Stokes (RANS) turbulence models were evaluated with respect to typical jet scaling parameters such as the jet half-height and the decay of maximum jet velocity, as well as coefficients from the law of the wall and for skin friction. Then, a plane wall jet generating from a rectangular slot of 1:6 aspect ratio located adjacent to the wall was investigated in a three-dimensional (3-D) model using large eddy simulation (LES) and the Stress-omega Reynolds stress model (SWRSM), with the results compared to experimental measurements.

Findings

The comparisons of these simulated flow characteristics indicated that the SWRSM was the best of the seven RANS models for simulating the turbulent wall jet. When scaled with outer variables, LES and SWRSM gave generally indistinguishable mean velocity profiles. However, SWRSM performed better for near-wall mean velocity profiles when scaled with inner variables. In general, the results show that LES performed reasonably well when predicting the Reynolds stresses.

Originality/value

The main contribution of this article is in determining the capabilities of different RANS turbulence closures and LES for the prediction of the 2-D steady wall jet flow to identify the best modelling approach.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2007

Gianluca Antonelli, Stefano Chiaverini, Gian Paolo Gerio, Marco Palladino and Gerardo Renga

A minimum‐time path‐following algorithm for industrial robots is presented in this paper.

Abstract

Purpose

A minimum‐time path‐following algorithm for industrial robots is presented in this paper.

Design/methodology/approach

The algorithm generates off‐line a trajectory that, by exploiting knowledge of the dynamic model, takes into account the actuators' torque limits while preserving the geometric path.

Findings

The algorithm has been designed, implemented and extensively tested on a Comau SMART H4 robot, a closed‐chain six‐degree‐of‐freedom industrial manipulator.

Practical implications

The algorithm is currently part of the new generation of industrial controllers of the Comau robots, the C4G controller. It is a feature added as with the name SmartMove4.

Originality/value

The paper presents a new minimum‐time path‐following algorithm for industrial robots that, by exploiting knowledge of the dynamic model, takes into account the actuators' torque limits while preserving the geometric path.

Details

Industrial Robot: An International Journal, vol. 34 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 1994

R. VANKEMMEL, W. SCHOENMAKER and K. DE MEYER

This paper presents a new discretization technique of the hydrodynamic energy balance model based on a finite‐element formulation. The concept of heat source lumping is…

45

Abstract

This paper presents a new discretization technique of the hydrodynamic energy balance model based on a finite‐element formulation. The concept of heat source lumping is introduced, and the thermal conductivity model includes the effect of varying both carrier concentrations and temperatures. The energy balance equation is formulated to account for kinetic energy as a convective flow. The new discretization method has the advantage that it allows for assembling the functions out of elementary variables available over elements instead of along element links. Therefore, theoretically, calculation of the Jacobian should be three times faster than by the classic method. Results are given for three examples. The method suffers from mathematical instabilities, but provides a good basis for future work to solve these problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 13 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 25 February 2014

Shantanu Pramanik and Manab Kumar Das

The purpose of the present study is to investigate the flow and turbulence characteristics of a turbulent wall jet flowing over a surface inclined with the horizontal and to…

Abstract

Purpose

The purpose of the present study is to investigate the flow and turbulence characteristics of a turbulent wall jet flowing over a surface inclined with the horizontal and to investigate the effect of variation of the angle of inclination of the wall on the flow structure of the wall jet.

Design/methodology/approach

The high Reynolds number two-equation κ− model with standard wall function is used as the turbulence model. The Reynolds number considered for the present study is 10,000. The Reynolds averaged Navier-Stokes (RANS) equations are used for predicting the turbulent flow. A staggered differencing technique employing both contravariant and Cartesian components of velocity has been applied. Results for distribution of wall static pressure and skin friction, decay of maximum streamwise velocity, streamwise variation of integral momentum and energy flux have been compared for the cases of α=0°, 5°, and 10°.

Findings

Flow field has been represented in terms of streamwise and lateral velocity contours, static pressure contour, vorticity contour and streamwise velocity and static pressure profiles at different locations along the oblique offset plate. Distribution of Reynolds stresses in terms of spanwise, lateral and turbulent shear stresses, and turbulent kinetic energy and its dissipation rate have been presented to describe the turbulent characteristics. Similarity of streamwise velocity and the velocity parallel to the oblique wall has been observed in the developed region of the wall jet flow. A decaying trend is observed in the variation of total integral momentum flux in the developed region of the wall jet which becomes more evident with increase in oblique angle. Developed flow region has indicated trend of similarity in profiles of streamwise velocity as well as velocity component parallel to the oblique wall. A depression in wall static pressure has been observed near the nozzle exit when the wall is inclined and the depression increases with increase in inclination. Effect of variation of oblique angles on skin friction coefficient has indicated that it decreases with increase in oblique angle. Growth of the outer and inner shear layers and spread of the jet shows linear variation with distance along the oblique wall. Decay of maximum streamwise velocity is found to be unaffected by variation in oblique angle except in the far downstream region. The streamwise variation of spanwise integral energy shows increase in oblique angle and decreases the magnitude of energy flux through the domain. In the developed flow region, streamwise variation of centreline turbulent intensities shows increased values with increase in oblique angle, while turbulence intensities along the jet centreline in the region X<12 remain unaffected by change in oblique angles. Normalized turbulent kinetic energy distribution highlights the difference in turbulence characteristics between the wall jet and reattached offset jet flow. Near wall velocity distribution shows that the inner region of boundary layer of the developed oblique wall jet follows a logarithmic profile, but it shows some difference from the standard logarithmic curve of turbulent boundary layers which can be attributed to an increase in skin friction coefficient and a decrease in thickness of the wall attached layer.

Originality/value

The study presents an in-depth investigation of the interaction between the jet and the inclined wall. It is shown that due to the Coanda effect, the jet follows the nearby wall. The findings will be useful in the study of combined flow of wall jet and offset jet and dual offset jet on oblique surfaces leading to a better design of some mechanical jet flow devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2011

Yvonne Stokes and Graham Carey

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

546

Abstract

Purpose

The purpose of this paper is to extend the penalty concept to treat partial slip, free surface, contact and related boundary conditions in viscous flow simulation.

Design/methodology/approach

The penalty partial‐slip formulation is analysed and related to the classical Navier slip condition. The same penalty scheme also allows partial penetration through a boundary, hence the implementation of porous wall boundaries. The finite element method is used for investigating and interpreting penalty approaches to boundary conditions.

Findings

The generalised penalty approach is verified by means of a novel variant of the circular‐Couette flow problem, having partial slip on one of the cylindrical boundaries, for which an analytic solution is derived. Further verificationis provided by consideration of viscous flow over a sphere with partial slip on the surface, and comparison of numerical and classical solutions. Numerical studies illustrate the versatility of the approach.

Research limitations/implications

The penalty approach is applied to some different boundaries: partial slip and partial penetration with no/full slip/penetration as limiting cases; free surface; space‐ and time‐varying boundary conditions which allow progressive contact over time. Application is made to curved and inclined boundaries. Sensitivity of flow to penalty parameters is an avenue for continued research, as is application of the penalty approach for non‐Newtonian flows.

Originality/value

This is the first work to show the relation between penalty formulation of boundary conditions and physical boundary conditions. It provides a method that overcomes past difficulties in implementing partial slip on boundaries of general shape, and which handles progressive contact. It also provides useful benchmark problems for future studies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 26 August 2024

Sarath Radhakrishnan, Joan Calafell, Arnau Miró, Bernat Font and Oriol Lehmkuhl

Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall…

Abstract

Purpose

Wall-modeled large eddy simulation (LES) is a practical tool for solving wall-bounded flows with less computational cost by avoiding the explicit resolution of the near-wall region. However, its use is limited in flows that have high non-equilibrium effects like separation or transition. This study aims to present a novel methodology of using high-fidelity data and machine learning (ML) techniques to capture these non-equilibrium effects.

Design/methodology/approach

A precursor to this methodology has already been tested in Radhakrishnan et al. (2021) for equilibrium flows using LES of channel flow data. In the current methodology, the high-fidelity data chosen for training includes direct numerical simulation of a double diffuser that has strong non-equilibrium flow regions, and LES of a channel flow. The ultimate purpose of the model is to distinguish between equilibrium and non-equilibrium regions, and to provide the appropriate wall shear stress. The ML system used for this study is gradient-boosted regression trees.

Findings

The authors show that the model can be trained to make accurate predictions for both equilibrium and non-equilibrium boundary layers. In example, the authors find that the model is very effective for corner flows and flows that involve relaminarization, while performing rather ineffectively at recirculation regions.

Originality/value

Data from relaminarization regions help the model to better understand such phenomenon and to provide an appropriate boundary condition based on that. This motivates the authors to continue the research in this direction by adding more non-equilibrium phenomena to the training data to capture recirculation as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2011

Martin Skote, Gustaf E. Mårtensson and Arne V. Johansson

A precise and rapid temperature cycling of a small volume of fluid is vital for an effective DNA replication process using the polymerase chain reaction (PCR). The purpose of this…

Abstract

Purpose

A precise and rapid temperature cycling of a small volume of fluid is vital for an effective DNA replication process using the polymerase chain reaction (PCR). The purpose of this paper is to study the velocity and temperature fields inside a rotating PCR‐tube during cooling of the enclosed liquid.

Design/methodology/approach

The velocity and temperature fields inside a rotating PCR‐tube during cooling of the enclosed liquid are studied. By using computational fluid dynamics, the time development of the flow can be investigated in detail. Owing to the rotation, the flow exhibits features which could never arise in a non‐rotating system.

Findings

An intricate azimuthal boundary layer flow is presented and explained. The inherent problem of stratification of the temperature is discussed, and different methods towards a remedy are presented. By analyzing the governing equations, some properties of the flow observed in the simulations are explained. It is shown that increasing the rate of rotation does not improve temperature homogenization.

Research limitations/implications

The simulations were performed for a limited number of temperature boundary conditions, as well as a specific simulation geometry.

Practical implications

The analytical and simulation results offer fundamental insight into the physics behind increased DNA duplication. Further simulations offer possible design improvements.

Originality/value

While many studies have probed the effects of buoyancy in rotating cylinders and the development of boundary layers in stratified flows in conical containers rotating around their axis of symmetry, little work has been specifically focused on the case where the axis of rotation is normal to the direction of the stratification, which is the case in the present study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 10000