Search results

1 – 7 of 7
Article
Publication date: 20 April 2015

Istvan Keppler, Zoltan Hudoba, Istvan Oldal, Attila Csatar and Laszlo Fenyvesi

– The analysis of the effect of tool vibrations on the measured and simulated draught forces of cultivator tools. This paper aims to discuss this issue.

459

Abstract

Purpose

The analysis of the effect of tool vibrations on the measured and simulated draught forces of cultivator tools. This paper aims to discuss this issue.

Design/methodology/approach

Soil bin measurements and discrete element method (DEM)-based simulations.

Findings

The soil-tool interaction induced free vibrations of cultivator tools have significant impact on the measured draught force, and the simulations made by using vibrating tools give similar results.

Research limitations/implications

Accurate calibration of discrete element model parameters can be done based on the reproduction of the whole Mohr-Coulomb failure line. Draught force ratio – velocity ratio values seem to be independent of tool geometry and soil conditions in case of velocity ratio higher than 2.

Practical implications

DEM-based numerical simulations can be used for modeling the effect of tool vibration on the draught force values. During discrete element simulations of soil-tool interaction, the effect of tool vibration may not be neglected.

Originality/value

The paper demonstrates that during the discrete element modelling of the soil-tool interaction, the tool vibration phenomenon should not be neglected.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2005

Nicolas Renon, Pierre Montmitonnet and Patrick Laborde

Purpose – The aim of this work is to provide a global 3D finite element (FE) model devoted to the modelling of superficial soil ploughing in the large deformation range and for a…

Abstract

Purpose – The aim of this work is to provide a global 3D finite element (FE) model devoted to the modelling of superficial soil ploughing in the large deformation range and for a vast class of soil treatment tools. Design/methodology/approach – We introduced soil constitutive equation in a FE software initially designed for the metal forming. We performed the numerical integration of the non‐linear ploughing problem. Non‐linearities encountered by the problem can be summed up: as soil constitutive equation (idealized with non‐associated compressible plastic law), unilateral frictional contact conditions (with a rigid body), geometrical non‐linearities (the ploughing tool) and large deformation range. To handle such difficulties we performed several numerical methods as implicit temporal scheme, Newton‐Raphson, non‐symmetric iterative solver, as well as proper approximation on stress and strain measures. Findings – Main results deal with the validation of the integration of the non‐linear constitutive equation in the code and a parametric study of the ploughing process. The influence of tool geometric parameters on the soil deformation modes and on the force experienced on the tools had been point out. As well, the influence of soil characteristics as compressibility had been analyzed. Research limitations/implications – This research is devoted to perform a numerical model applicable for a large range of soil treatment tools and for a large class of soil. However, taking into account all kind of soil is utopist. So limitations met are essentially related to the limit of the accuracy of the elasto‐plastic idealization for the soil. Practical implications – In practice the numerical model exposed in the paper can clearly help to improve and optimize any process involving superficial soil submitted to the mechanical action of a rigid body. Originality/value – The original value of the paper is to provide a global and an applicable numerical model able to take into account the main topics related to the ploughing of superficial soils. Industrials in geotechnics, in agriculture or in military purposes can benefit in using such numerical model.

Details

Engineering Computations, vol. 22 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2017

Istvan Oldal, Ferenc Safranyik and Istvan Keppler

The purpose of this study is the reduction of computational time demand of discrete element based modeling.

Abstract

Purpose

The purpose of this study is the reduction of computational time demand of discrete element based modeling.

Design/methodology/approach

The methodology is the systematic changing of particle size and micromechanical parameters to reduce computational time requirements.

Findings

In some cases, the computational demand of discrete simulations can be reduced to about 95 per cent.

Originality/value

Based on the results and demonstrated methodology, the enormous computational time demand of discrete element-based modeling can be reduced significantly.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 December 2021

Istvan Keppler, Adrienn Bablena, Nihal D. Salman and Péter Kiss

Transportation of the measurement samples from their original place to the measurement site causes significant changes in their mechanical properties. The possibility of making in

Abstract

Purpose

Transportation of the measurement samples from their original place to the measurement site causes significant changes in their mechanical properties. The possibility of making in situ measurements helps to create more precise discrete element models.

Design/methodology/approach

The possibility of using in situ modified vane shear test based measurement for the calibration of discrete element models is demonstrated in this work.

Findings

The advantage of employing the adjusted vane test is that the values of in situ measurements can be used for the calibration.

Originality/value

The procedure we present allows us to perform accurate discrete element calibration using data from on-site measurements that can be performed quickly and easily.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2009

Jianqi Shen, Xianlong Jin, Yun Li and Jiyun Wang

This paper aims to provide a 3D finite element (FE) model for dynamic simulation of cutterhead and soil interaction in slurry shield tunneling.

1080

Abstract

Purpose

This paper aims to provide a 3D finite element (FE) model for dynamic simulation of cutterhead and soil interaction in slurry shield tunneling.

Design/methodology/approach

Dynamic numerical simulation of excavation process is realized by combined use of submodeling method and arbitrary Lagrangian Eulerian (ALE) approach. The model size reduction, soil mesh refinement and stress state initialization are fulfilled by submodeling. The large soil deformations, failures and flows are handled by ALE approach. Computation time is reduced by parallel domain decomposition with recursive coordinate bisection method. Validation of the proposed approach is achieved by comparing the numerical results with monitored data from the model test for Yangtze River tunneling project.

Findings

The proposed approach proves to be an effective technique to simulate the cutterhead and soil interaction dynamically in tunnel excavation. Comparative study on the effect of mesh density indicates the requirement of relative mesh refinement. Exploration of the parallel computing performance points out the best decomposed domain for the simulation. Parametric study on the effect of rotary speed and investigation on soil properties presents the significant factors for torque.

Practical implications

The proposed numerical model can help in the development process of reduced‐scale model test, as well as design and selection of slurry shield machines.

Originality/value

The originality comes from the need to evaluate the excavation performance of slurry shield machine in tunneling project. This contribution provides a 3D numerical approach, which takes into account the stress state in soil and dynamic contact effects between soil and cutterhead. In this work, large deformation in soil is handled. Besides, soil failures and flows are captured.

Details

Engineering Computations, vol. 26 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 June 2017

Xiang Yu, Degao Zou, Xianjing Kong and Long Yu

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This…

Abstract

Purpose

A large, uneven settlement that is unfavourable to dam safety can occur between a concrete cut-off wall and the high-plasticity clay of earth core dam built on alluviums. This issue has been often studied using the small-strain finite element (FE) method in previous research. This paper aims to research the interaction behaviour between a concrete cut-off wall and high-plasticity clay using large-deformation FE analyses.

Design/methodology/approach

The re-meshing and interpolation technique with a small-strain (RITSS) method was performed using an independently developed program and adopted for large-deformation FE analyses, and a suitable element size for the high-plasticity clay region was suggested. The layered construction process of an earth core dam built on thick alluviums was simulated using the RITSS method incorporating a hyperbolic model for soil.

Findings

The RITSS method is an effective technique for simulating the soil–structure interaction during dam construction. The RITSS analysis predicted a higher maximum principle stress of the concrete cut-off wall and higher stress levels in the high-plasticity clay region than small-strain FE analysis.

Originality/value

A practical method for large-deformation FE analysis was advised and was used for the first time to study the interaction between a concrete cut-off wall and high-plasticity clay in dam engineering. Large deformation in the high-plasticity clay was handled using the RITSS method. Moreover, the penetration process of the concrete cut-off wall into the high-plasticity clay was captured using a favourable element shape and mesh density.

Details

Engineering Computations, vol. 34 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2010

Beichuan Yan, Richard A. Regueiro and Stein Sture

The purpose of this paper is to develop a discrete element (DE) and multiscale modeling methodology to represent granular media at their particle scale as they interface solid…

1371

Abstract

Purpose

The purpose of this paper is to develop a discrete element (DE) and multiscale modeling methodology to represent granular media at their particle scale as they interface solid deformable bodies, such as soil‐tool, tire, penetrometer, pile, etc., interfaces.

Design/methodology/approach

A three‐dimensional ellipsoidal discrete element method (DEM) is developed to more physically represent particle shape in granular media while retaining the efficiency of smooth contact interface conditions for computation. DE coupling to finite element (FE) facets is presented to demonstrate initially the development of overlapping bridging scale methods for concurrent multiscale modeling of granular media.

Findings

A closed‐form solution of ellipsoidal particle contact resolution and stiffness is presented and demonstrated for two particle, and many particle contact simulations, during gravity deposition, and quasi‐static oedometer, triaxial compression, and pile penetration. The DE‐FE facet coupling demonstrates the potential to alleviate artificial boundary effects in the shear deformation region between DEM granular media and deformable solid bodies.

Research limitations/implications

The research is being extended to couple more robustly the ellipsoidal DEM code and a higher order continuum FE code via overlapping bridging scale methods, in order to remove dependence of penetration/shear resistance on the boundary placement for DE simulation.

Practical implications

When concurrent multiscale computational modeling of interface conditions between deformable solid bodies and granular materials reaches maturity, modelers will be able to simulate the mechanical behavior accounting for physical particle sizes and flow in the interface region, and thus design their tool, tire, penetrometer, or pile accordingly.

Originality/value

A closed‐form solution for ellipsoidal particle contact is demonstrated in this paper, and the ability to couple DE to FE facets.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 7 of 7