Search results

1 – 10 of 153
Article
Publication date: 5 September 2023

Nikesh Chowrasia, Subramani S.N., Harish Pothukuchi and B.S.V. Patnaik

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase…

Abstract

Purpose

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase significantly enhances the heat transfer coefficient due to latent heat of vaporization, eventually the formed vapor bubbles may coalesce and deteriorate the heat transfer from the heated wall to the liquid phase. Due to the poor heat transfer characteristics of the vapour phase, the heat transfer rate drastically reduces when it reaches a specific value of wall heat flux. Such a threshold value is identified as critical heat flux (CHF), and the phenomenon is known as departure from nucleate boiling (DNB). An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Therefore, the present study aims at the prediction of DNB type CHF in a hexagonal sub-assembly.

Design/methodology/approach

Computational fluid dynamics (CFD) simulations are performed to predict DNB in a hexagonal sub-assembly. The methodology uses an Eulerian–Eulerian multiphase flow (EEMF) model in conjunction with multiple size group (MuSiG) model. The breakup and coalescence of vapour bubbles are accounted using a population balance approach.

Findings

Bubble departure diameter parameters in EEMF framework are recalibrated to simulate the near atmospheric pressure conditions. The predictions from the modified correlation for bubble departure diameter are found to be in good agreement against the experimental data. The simulations are further extended to investigate the influence of blockage (b) on DNB type CHF at low operating pressure conditions. Larger size vapour bubbles are observed to move away from the corner sub-channel region due to the presence of blockage. Corner sub-channels were found to be more prone to experience DNB type CHF compared to the interior and edge sub-channels.

Practical implications

An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Moreover, a wide spectrum of heat transfer equipment of engineering interest will be benefited by an accurate prediction of wall characteristics using breakup and coalescence-based models as described in the present study.

Originality/value

Simulations are performed to predict DNB type CHF. The EEMF and wall heat flux partition model framework coupled with the MuSiG model is novel, and a detailed variation of the coolant velocity, temperature and vapour volume fraction in a hexagonal sub-assembly was obtained. The present CFD model framework was observed to predict the onset of vapour volume fraction and DNB type CHF. Simulations are further extended to predict CHF in a hexagonal sub-assembly under the influence of blockage. For all the values of blockage, the vapour volume fraction is found to be higher in the corner region, and thus the corner sub-channel experiences CHF. Although DNB type CHF is observed in corner sub-channel, it is noticed that the presence of blockage in the interior sub-channel promotes the coolant mixing and results in higher values of CHF in the corner sub-channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

Richard John Boulton, Lia Louise Boulton and Michael John Boulton

High levels of interior water vapour lead to condensation and black mould that in turn represent significant risks to residential properties and their occupants. Beliefs about…

Abstract

Purpose

High levels of interior water vapour lead to condensation and black mould that in turn represent significant risks to residential properties and their occupants. Beliefs about window opening are good predictors of the degree to which householders will actually open windows to purge their homes of water vapour, including water vapour that they themselves generate. The present study tested if a short information-giving intervention could enhance householders’ beliefs that foster window opening as purge ventilation and, in turn, lead to greater window opening.

Design/methodology/approach

Data were collected from 242 UK householders with robust psychometrically sound measures embedded in an online self-report survey that also presented the intervention information.

Findings

The intervention led participants, and males in particular, to have significantly greater concerns about condensation and mould and significantly less concerns about heat loss costs arising from opening windows, and these altered beliefs in turn predicted a greater intention to open windows in the future.

Practical implications

By sharing simple information, surveyors and other building professionals can help householders take the simple step of opening their windows and so reduce the threats that condensation and mould present to themselves and their homes.

Originality/value

This is the first study to test (1) a time-based model that predicted the intervention would have a positive effect on specific window opening attitudes and that those new attitudes would in turn affect window opening intentions, and (2) if the intervention had different effects on men and women.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 29 December 2023

Abdelhamid Ads, Santosh Murlidhar Pingale and Deepak Khare

This study’s fundamental objective is to assess climate change impact on reference evapotranspiration (ETo) patterns in Egypt under the latest shared socioeconomic pathways (SSPs…

Abstract

Purpose

This study’s fundamental objective is to assess climate change impact on reference evapotranspiration (ETo) patterns in Egypt under the latest shared socioeconomic pathways (SSPs) of climate change scenarios. Additionally, the study considered the change in the future solar radiation and actual vapor pressure and predicted them from historical data, as these factors significantly impact changes in the ETo.

Design/methodology/approach

The study utilizes data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) models to analyze reference ETo. Six models are used, and an ArcGIS tool is created to calculate the monthly average ETo for historical and future periods. The tool considers changes in actual vapor pressure and solar radiation, which are the primary factors influencing ETo.

Findings

The research reveals that monthly reference ETo in Egypt follows a distinct pattern, with the highest values concentrated in the southern region during summer and the lowest values in the northern part during winter. This disparity is primarily driven by mean air temperature, which is significantly higher in the southern areas. Looking ahead to the near future (2020–2040), the data shows that Aswan, in the south, continues to have the highest annual ETo, while Kafr ash Shaykh, in the north, maintains the lowest. This pattern remains consistent in the subsequent period (2040–2060). Additionally, the study identifies variations in ETo , with the most significant variability occurring in Shamal Sina under the SSP585 scenario and the least variability in Aswan under the SSP370 scenario for the 2020–2040 time frame.

Originality/value

This study’s originality lies in its focused analysis of climate change effects on ETo, incorporating crucial factors like actual vapor pressure and solar radiation. Its significance becomes evident as it projects ETo patterns into the near and distant future, providing indispensable insights for long-term planning and tailored adaptation strategies. As a result, this research serves as a valuable resource for policymakers and researchers in need of in-depth, region-specific climate change impact assessments.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 31 May 2022

Samridhi Garg, Monica Puri Sikka and Vinay Kumar Midha

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable…

Abstract

Purpose

Perspiration and heat are produced by the body and must be eliminated to maintain a stable body temperature. Sweat, heat and air must pass through the fabric to be comfortable. The cloth absorbs sweat and then releases it, allowing the body to chill down. By capillary action, moisture is driven away from fabric pores or sucked out of yarns. Convectional air movement improves sweat drainage, which may aid in body temperature reduction. Clothing reduces the skin's ability to transport heat and moisture to the outside. Excessive moisture makes clothing stick to the skin, whereas excessive heat induces heat stress, making the user uncomfortable. Wet heat loss is significantly more difficult to understand than dry heat loss. The purpose of this study is to provided a good compilation of complete information on wet thermal comfort of textile and technological elements to be consider while constructing protective apparel.

Design/methodology/approach

This paper aims to critically review studies on the thermal comfort of textiles in wet conditions and assess the results to guide future research.

Findings

Several recent studies focused on wet textiles' impact on comfort. Moisture reduces the fabric's thermal insulation value while also altering its moisture characteristics. Moisture and heat conductivity were linked. Sweat and other factors impact fabric comfort. So, while evaluating a fabric's comfort, consider both external and inside moisture.

Originality/value

The systematic literature review in this research focuses on wet thermal comfort and technological elements to consider while constructing protective apparel.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 25 July 2022

Tuba Kavas Akarca, Merve Karayol and Isinay E. Yuzay

The purpose of this study is to develop a multifunctional coating layer based on nitrocellulose (NC)/acrylic resins containing precipitated silica and kaolin and investigate its…

Abstract

Purpose

The purpose of this study is to develop a multifunctional coating layer based on nitrocellulose (NC)/acrylic resins containing precipitated silica and kaolin and investigate its suitability for use in packaging applications.

Design/methodology/approach

Different loading levels (1 and 5 Wt.%) of precipitated silica or kaolin particles were incorporated into NC/acrylic-based coating formulations and applied on low-density polyethylene (LDPE) films. The coatings and coated LDPE films were characterized in terms of structural, physical, mechanical, thermal, optical, surface, morphological and water vapor barrier properties.

Findings

The glossiness of the coating formulations decreased by increasing the precipitated silica and kaolin content. The incorporation of kaolin (1 and 5 Wt.%) and precipitated silica (1 Wt.%) had no significant effect on the melting temperature of LDPE film; however, with the addition of 5 Wt.% precipitated silica, the melting and crystallization temperatures were significantly changed. The incorporation of 5 Wt.% precipitated silica and kaolin also enhanced the water vapor barrier properties of LDPE films. The light transmittance declined with the precipitated silica and kaolin addition, especially in the ultraviolet (UV)-A/UV-B spectrum regions indicating an excellent UV light protection.

Originality/value

It was concluded that NC/acrylic resins coatings containing precipitated silica and kaolin exhibit improved thermal stability, UV and water vapor barrier properties and have the potential for use in packaging applications.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 January 2024

Hung Ngoc Phan and Satoko Okubayashi

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC…

Abstract

Purpose

Dehydrated bacterial cellulose’s (BC) intrinsic rigidity constrains applicability across textiles, leather, health care and other sectors. This study aims to yield a novel BC modification method using glycerol and succinic acid with catalyst and heat, applied via an industrially scalable padding method to tackle BC’s stiffness drawbacks and enhance BC properties.

Design/methodology/approach

Fabric-like BC is generated via mechanical dehydration and then finished by using padding method with glycerol, succinic acid, catalyst and heat. Comprehensive material characterizations, including international testing standards for stiffness, bending properties (cantilever method), tensile properties, moisture vapor transmission rate, moisture content and regain, washing, thermal gravimetric analysis, derivative thermogravimetry, Fourier-transform infrared spectroscopy and colorimetric measurement, are used.

Findings

The combination of BC/glycerol/succinic acid dramatically enhanced porous structure, elongation (27.40 ± 6.39%), flexibility (flexural rigidity of 21.46 ± 4.01 µN m; bending modulus of 97.45 ± 18.20 MPa) and moisture management (moisture vapor transmission rate of 961.07 ± 86.16 g/m2/24 h; moisture content of 27.43 ± 2.50%; and moisture regain of 37.94 ± 4.73%). This softening process modified the thermal stability of BC. Besides, this study alleviated the drawbacks for washing (five cycles) of BC and glycerol caused by the ineffective affinity between glycerol and cellulose by adding succinic acid with catalyst and heat.

Originality/value

The study yields an effective padding process for BC softening and a unique modified BC to contribute added value to textile and leather industries as a sustainable alternative to existing materials and a premise for future research on BC functionalization by using doable technologies in mass production as padding.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 13 May 2024

Emad S. Shafik, Mena Faheem, Marwa El-Sheikh, Amira Abdalla Abdelshafy Mohamed and Seham Samir Soliman

The present work aims to prepare biocomposites blend based on linear low density polyethylene/ starch without using harmful chemicals to improve the adhesion between two phases…

Abstract

Purpose

The present work aims to prepare biocomposites blend based on linear low density polyethylene/ starch without using harmful chemicals to improve the adhesion between two phases. Also, the efficiency of essential oils as green plasticizers and natural antimicrobial agents were evaluated.

Design/methodology/approach

Barrier properties and biodegradation behavior of linear low density polyethylene/starch (LLDPE/starch) blends plasticized with different essential oils including moringa oleifera and castor oils wereassessed as a comparison with traditional plasticizer such as glycerol. Biodegradation behavior forLLDPE/starch blends was monitored by soil burial test. The composted samples were recovered then washed followed by drying, and weighting samples after 30, 60, and 90 days to assess the change in weight loss. Also, mechanical properties including retention values of tensile strength and elongation at break were measured before and after composting. Furthermore, scanning electron microscope (SEM) was used to evaluate the change in the morphology of the polymeric blends. In addition to, the antimicrobial activity of plasticized LLDPE/starch blends films was evaluated using a standard plate counting technique.

Findings

The results illustrate that the water vapor transition rate increases from 2.5 g m−2 24 h−1 for LLDPE/5starch to 4.21 g m−2 24 h−1 and 4.43 g m−2 24 h−1 for castor and moringa oleifera respectively. Also, the retained tensile strength values of all blends decrease gradually with increasing composting period. Unplasticized LLDPE/5starch showed highest tensile strength retention of 91.6% compared to the other blends that were 89.61, 88.49 and 86.91 for the plasticized LLDPE/5starch with glycerol, castor and M. oleifera oils respectively. As well as, the presence of essential oils in LLDPE/ starch blends increase the inhibition growth of escherichia coli, candida albicans and staphylococcus aureus.

Originality/value

The objective of this work is to develop cost-effective and environmentally-friendly methods for preparing biodegradable polymers suitable for packaging applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 153