Search results

1 – 10 of over 8000
Article
Publication date: 17 July 2024

Omprakash Ramalingam Rethnam and Albert Thomas

Due to the increasing frequency of extreme weather and densifying urban landscapes, residences are susceptible to heat-related discomfort, especially those in a naturally…

Abstract

Purpose

Due to the increasing frequency of extreme weather and densifying urban landscapes, residences are susceptible to heat-related discomfort, especially those in a naturally ventilated built environment in tropical climates. Indoor thermal comfort is thus paramount to building sustainability and improving occupants' health and well-being. However, to assess indoor thermal comfort considering the urban context, it is conventional to use questionnaire surveys and monitoring units, which are both case-centric and time-intensive. This study presents a dynamic computational thermal comfort modeling framework that can determine indoor thermal comfort at an urban scale to bridge this gap.

Design/methodology/approach

The framework culminates in developing a deep learning model for predicting the accurate hourly indoor temperature of urban building stock by the coupling urban scale capabilities of environment modeling with single-building dynamic thermal simulations.

Findings

Using the framework, a surrogate model is created and verified for Dharavi, India's informal urban settlement. The results indicated that the developed surrogate model could predict the building's indoor temperature in several complex new urban scenarios with different building orientations, layouts, building-to-building distances and surrounding building heights, using five different random urban representative scenarios as the training set. The prediction accuracy was reliable, as evidenced by the mean bias error (MBE) and coefficient of (CV) root mean squared error (MSE) falling between 0 and 5%. The findings also showed that if the urban context is ignored, estimates of annual discomfort hours may be inaccurate by as much as 70%.

Social implications

The developed computational framework could help regulators and policymakers engage in more informed and quantitative decision-making and direct efforts to enhance the thermal comfort of low-income dwellings and informal settlements.

Originality/value

Up to this point, majority of literature that has been presented has concentrated on building a body of knowledge about urban-based modeling from an energy management standpoint. In contrast, this study suggests a dynamic computational thermal comfort modeling framework that takes into account the urban context of the neighborhood while examining the indoor thermal comfort of the residential building stock.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 March 2024

Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…

Abstract

Purpose

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.

Design/methodology/approach

Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.

Findings

The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.

Originality/value

This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 April 2022

Hyoungsub Kim, Se Woong Kim, Yongjun Jo and Eujin Julia Kim

First, the contributions of spatial characteristics to microclimate were analyzed. And the results from mobile measurements were compared to those from fixed measurements to…

273

Abstract

Purpose

First, the contributions of spatial characteristics to microclimate were analyzed. And the results from mobile measurements were compared to those from fixed measurements to examine accuracy of mobile method. Air temperature and physiologically equivalent temperature (PET) profiles were plotted to explore the impacts of the spatial characteristics of that urban square and local street.

Design/methodology/approach

This research investigates the effects of urban canyons and landscape on air temperature and outdoor thermal comfort in an open square in Seoul, Korea, a city of diverse thermal environments. Mobile field measurements were carried out to obtain local meteorological data based on higher spatial resolution.

Findings

On a day in October under clear sky, air temperature and PET differences of up to 1.77 °C and 9.6 °C were observed at 2 p.m. and 3 p.m., respectively. These were mainly from the impact of shading effects caused by surrounding obstacles. The current layout and volume of vegetation in the square seemed not effective for reducing air temperature and improving thermal comfort, which needs further study.

Originality/value

The authors tested a way to investigate time delay when using mobile measurements by correcting measured local data using adjacent meteorological observatory data. The findings of and limitations on mobile station-based field measurement and analysis are discussed herein.

Article
Publication date: 5 May 2020

Wafa Ghaffour, Mohammed Nabil Ouissi and Marc André Velay Dabat

The preservation of historic urban centres prevents anarchic development of the city and ensures a harmonious evolution of the urban form. It also improves the quality of life in…

Abstract

Purpose

The preservation of historic urban centres prevents anarchic development of the city and ensures a harmonious evolution of the urban form. It also improves the quality of life in the context of climate and environmental change. Morphological and geometric indicators of the urban fabric are key parameters in the formation of external microclimates. They provide a positive effect on the thermal comfort of pedestrians. The objective of this work is to study the impact of the site morphology on the external microclimate and to understand the relationship between the subjective perception and the objective quantification of the thermal environment. The result of this study has allowed us to propose solutions for the creation of a microclimate favourable to the appropriation of outdoor spaces. The authors finally propose guidelines for the design and rehabilitation of the historic site based on the establishment of links between the site's configuration, microclimatic conditions and users' perceptions.

Design/methodology/approach

Part of this study included the analysis of the microclimate of the historic “Bab El Hadid” district of the City of Tlemcen, by developing a questionnaire survey and a numerical simulation validated by measurements of the microclimate the authors made on site. To complete this task, the authors applied the Envi-met 4.1 model during the coldest month of the winter and the hottest month of the summer. Urban parameters are represented at different measurement points characterised by a variability of the sky view factor (SVF).

Findings

The results presented in terms of average expected the predicted mean vote (PMV) voting, solar access and air temperature. They show that thermal conditions are directly related to the SVF, the height/width ratio (H/L) of streets as well as the orientation of urban canyons. The points located in the streets facing North–South, present an acceptable performance. Streets shaded by trees with a canyon aspect ratio of between 1.18 and 1.70 reduce heat stress in outdoor spaces. The PMV models discussed provide information on the most appropriate locations for pedestrians. The authors have proposed urban orientations that could limit unfavourable conditions in outdoor spaces. They are useful for architects and urban planners in the design and rehabilitation of historic centres.

Originality/value

In Tlemcen, the microclimate is not taken into account in the design and rehabilitation of urban fabrics. For this specific purpose, the authors want to stress in the research the importance of safeguarding urban heritage through the renewal of the old city and the bioclimatic rehabilitation of its urban spaces.

Details

Smart and Sustainable Built Environment, vol. 10 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 30 April 2020

Nasim Eslamirad, Soheil Malekpour Kolbadinejad, Mohammadjavad Mahdavinejad and Mohammad Mehranrad

This research aims to introduce a new methodology for integration between urban design strategies and supervised machine learning (SML) method – by applying both energy…

Abstract

Purpose

This research aims to introduce a new methodology for integration between urban design strategies and supervised machine learning (SML) method – by applying both energy engineering modeling (evaluating phase) for the existing green sidewalks and statistical energy modeling (predicting phase) for the new ones – to offer algorithms that help to catch the optimum morphology of green sidewalks, in case of high quality of the outdoor thermal comfort and less errors in results.

Design/methodology/approach

The tools of the study are the way of processing by SML, predicting the future based on the past. Machine learning is benefited from Python advantages. The structure of the study consisted of two main parts, as the majority of the similar studies follow: engineering energy modeling and statistical energy modeling. According to the concept of the study, at first, from 2268 models, some are randomly selected, simulated and sensitively analyzed by ENVI-met. Furthermore, the Envi-met output as the quantity of thermal comfort – predicted mean vote (PMV) and weather items are inputs of Python. Then, the formed data set is processed by SML, to reach the final reliable predicted output.

Findings

The process of SML leads the study to find thermal comfort of current models and other similar sidewalks. The results are evaluated by both PMV mathematical model and SML error evaluation functions. The results confirm that the average of the occurred error is about 1%. Then the method of study is reliable to apply in the variety of similar fields. Finding of this study can be helpful in perspective of the sustainable architecture strategies in the buildings and urban scales, to determine, monitor and control energy-based behaviors (thermal comfort, heating, cooling, lighting and ventilation) in operational phase of the systems (existed elements in buildings, and constructions) and the planning and designing phase of the future built cases – all over their life spans.

Research limitations/implications

Limitations of the study are related to the study variables and alternatives that are notable impact on the findings. Furthermore, the most trustable input data will result in the more accuracy in output. Then modeling and simulation processes are most significant part of the research to reach the exact results in the final step.

Practical implications

Finding of the study can be helpful in urban design strategies. By finding outdoor thermal comfort that resulted from machine learning method, urban and landscape designers, policymakers and architects are able to estimate the features of their designs in air quality and urban health and can be sure in catching design goals in case of thermal comfort in urban atmosphere.

Social implications

By 2030, cities are delved as living spaces for about three out of five people. As green infrastructures influence in moderating the cities’ climate, the relationship between green spaces and habitants’ thermal comfort is deduced. Although the strategies to outside thermal comfort improvement, by design methods and applicants, are not new subject to discuss, applying machines that may be common in predicting results can be called as a new insight in applying more effective design strategies and in urban environment’s comfort preparation. Then study’s footprint in social implications stems in learning from the previous projects and developing more efficient strategies to prepare cities as the more comfortable and healthy places to live, with the more efficient models and consuming money and time.

Originality/value

The study achievements are expected to be applied not only in Tehran but also in other climate zones as the pattern in more eco-city design strategies. Although some similar studies are done in different majors, the concept of study is new vision in urban studies.

Details

Smart and Sustainable Built Environment, vol. 9 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 2 December 2020

Hocine Boumaraf and Louisa Amireche

The purpose of this paper is to move beyond the stage of analysis of exclusively physical microclimatic phenomena and extending ourselves to the study of the impact of the…

Abstract

Purpose

The purpose of this paper is to move beyond the stage of analysis of exclusively physical microclimatic phenomena and extending ourselves to the study of the impact of the microclimate environment on the user behavior in public spaces. This paper will open up new opportunities for the development of urban open spaces and facilitate the decision-making for urban decision-makers, city managers and planners to make the right urban planning decision.

Design/methodology/approach

The methodology for identifying the links between microclimatic quality of urban routes and behaviors was developed on the basis of the results obtained from field surveys carried out in nine public urban areas of the city of Biskra, three urban space are located in a traditional urban fabric (the medina) and the other five in new urban areas, in the two climatic seasons (winter, summer) of 2019. For this exploratory research, two types of instruments were used to collect data from environmental and human monitoring.

Findings

Improving microclimatic conditions in urban spaces can allow people to spend more time outside, with the possibility of increasing their social cohesion. The overall objective of this research is to better understand the impact of microclimatic characteristics on pedestrian behavior of nine selected public urban spaces in the city of Biskra, Algeria. To characterize this impact, the authors developed an approach based on crossing data of field surveys, including structured interviews with a questionnaire and observations of human activities (video recordings), as well as microclimate monitoring, conducted during the two climatic seasons (winter, summer) 2019. The analysis of the results allowed to verify the impact of the two climatic seasons (winter, summer) on the variation in the density of occupancy of the different urban areas studied and the duration of the user stations. The authors also illustrated that the number of individuals higher in the traditional urban spaces of the city of Biskra or the conditions of climate comfort are more comfortable than the urban spaces in the new urban areas of the city of Biskra during the summer, which is the season most problematic.

Originality/value

In recent years, there has been a proliferation of scientific studies on the subject of control of microclimatic characteristics and, in particular, on the consideration of the thermal comfort of persons by qualitative analysis, prediction and representation of the perception of external environments. Improving microclimatic conditions in urban spaces can allow people to spend more time outside, with the possibility of increasing their social cohesion. This study highlights the importance of climate-conscious urban design and design flexibility. Urban environments can be modified in summer and winter to provide a better outdoor thermal environment for users. In addition, this study also shows the importance of harmony between microclimate and urban design. Such harmony can be achieved by including requirements for a climate-conscious urban design in the planning regulations for cities in arid zones.

Article
Publication date: 18 May 2015

L. Kleerekoper, A.A.J.F. van den Dobbelsteen, G.J. Hordijk, M.J. van Dorst and C.L. Martin

Due to the predicted global temperature rise and local expansion and densification of cities, Urban Heat Islands (UHI) are likely to increase in the Netherlands. As spatial…

Abstract

Purpose

Due to the predicted global temperature rise and local expansion and densification of cities, Urban Heat Islands (UHI) are likely to increase in the Netherlands. As spatial characteristics of a city influence its climate, urban design could be deployed to mitigate the combined effects of climate change and UHIs. Although cities are already experiencing problems during warm-weather periods, no clear spatial means or strategies are available for urban designers to alleviate heat stress. The paper aims to discuss these issues.

Design/methodology/approach

There is a lack of knowledge on cooling effects that can be achieved through urban design in Dutch neighbourhoods. In this paper, the cooling effects of various design measures are compared on the level of urban blocks and neighbourhoods, with a focus on a 1960s neighbourhood in Amsterdam-West. The cooling effects are simulated by means of the microclimate model ENVI-met, here the effects on air temperature and physiological equivalent temperature will be evaluated.

Findings

The use of green, and a higher roof albedo in particular, seem to perform well as cooling measures. Combinations of cooling measures do not necessarily result in better performance and might even counteract other cooling effects. However, combinations of measures that lead to an increase in the environmental temperature show the largest heating.

Research limitations/implications

Effects of green roofs and facades are beyond the scope of this study, though future suggestions for this research will be included.

Originality/value

The results add to the body of knowledge in the area of climate design enabling policy makers and designers to estimate the effect of simulated measures in comparable neighbourhoods and thus improve thermal comfort in outdoor spaces.

Details

Smart and Sustainable Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 November 2016

Salman Shooshtarian and Ian Ridley

Assessment of outdoor thermal perception in urban spaces is of particular importance due to its financial, social and ecological consequences. Thermal perception includes four…

Abstract

Purpose

Assessment of outdoor thermal perception in urban spaces is of particular importance due to its financial, social and ecological consequences. Thermal perception includes four elements: thermal sensation votes (TSV), thermal preference (Tpref), overall thermal comfort (Tc) and thermal acceptability (Taccept). Thermal acceptability can offer a benchmark that specifies the acceptable thermal range (ATR), which is useful for urban planners, designers, and bio-meteorologists. ATR, however, can be defined either using direct or indirect measures. The purpose of this paper is to investigate the validity of the indirect measures of ATR, which are most commonly used in outdoor thermal comfort assessments.

Design/methodology/approach

This study was conducted in the context of Melbourne, which has an oceanic temperate climate (Cfb). Three sites forming RMIT University City Campus (RUCC) were selected as the case studies, which were located in the heart of Melbourne Central Business District. A field survey was conducted in RUCC during three seasons, from November 2014 (Spring) to May 2015 (Autumn), which consisted of concurrent field measurements and questionnaire surveys from 9:00 a.m. to 5:00 p.m.

Findings

In total, 1,059 valid questionnaires were collected from the three sites of RUCC. The results of comparative analysis between the different measures of ATR determination showed that the various elements of thermal perceptions expressed the users’ thermal judgements in different ways. Therefore, it was found that the instruction recommended by the thermal comfort standards on the definition of ATR failed to provide an appropriate estimation of ATR for outdoor built environments. The ATR, defined using TSV, therefore, was revised by the direct measure of thermal acceptability. The resulting range showed broader limits in acceptable thermal conditions in RUCC outdoor spaces users. Lastly, the results suggest that in the absence of directly measured acceptability of thermal conditions in field surveys, overall comfort is the most appropriate indirect measure to use.

Originality/value

Some indoor thermal comfort studies have used the alternatives for defining ATR. However, as the applicability of these four methods is yet to be fully explored in outdoor conditions with large weather variations, it is valuable to conduct a comparative analysis among these methods. This study also intended to understand the dynamics of comfort range under non-steady and non-uniform outdoor conditions. The resultant outcome has provided information on the relationship between different measures of thermal perceptions. Ultimately, this research aimed to explore the extent to which the indirect measures of acceptability are considered as a reliable source of information compared to the direct measure.

Details

Smart and Sustainable Built Environment, vol. 5 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 July 2022

Ender Peker

The purpose of this paper is to explore the role of locally-produced architectural design solutions for the provision of thermal comfort in the vernacular settlements of Mardin…

Abstract

Purpose

The purpose of this paper is to explore the role of locally-produced architectural design solutions for the provision of thermal comfort in the vernacular settlements of Mardin, Turkey.

Design/methodology/approach

With an aim of extracting clues of climate responsive design, the paper develops a socio-technical assessment methodology and presents a comparative inquiry between the vernacular and contemporary built environments of Mardin.

Findings

Findings display that the capacity of vernacular architecture in providing a more climate responsive living environment than contemporary one is in fact correlated with the design of living spaces in harmony with the local climatic conditions as well as how inhabitants traditionally use and behave in designed space.

Originality/value

The paper argues for a need for (re)conceptualization of thermal comfort within and through the production of housing, as well as by taking into account the ways in which end-users interact, adapt and sustain end-users' everyday life in accordance with the local climatic characteristics.

Details

Open House International, vol. 47 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 31 May 2024

Farzaneh Zarei and Mazdak Nik-Bakht

This paper aims to enrich the 3D urban models with data contributed by citizens to support data-driven decision-making in urban infrastructure projects. We introduced a new…

Abstract

Purpose

This paper aims to enrich the 3D urban models with data contributed by citizens to support data-driven decision-making in urban infrastructure projects. We introduced a new application domain extension to CityGML (social – input ADE) to enable citizens to store, classify and exchange comments generated by citizens regarding infrastructure elements. The main goal of social – input ADE is to add citizens’ feedback as semantic objects to the CityGML model.

Design/methodology/approach

Firstly, we identified the key functionalities of the suggested ADE and how to integrate them with existing 3D urban models. Next, we developed a high-level conceptual design outlining the main components and interactions within the social-input ADE. Then we proposed a package diagram for the social – input ADE to illustrate the organization of model elements and their dependencies. We also provide a detailed discussion of the functionality of different modules in the social-input ADE.

Findings

As a result of this research, it has seen that informative streams of information are generated via mining the stored data. The proposed ADE links the information of the built environment to the knowledge of end-users and enables an endless number of socially driven innovative solutions.

Originality/value

This work aims to provide a digital platform for aggregating, organizing and filtering the distributed end-users’ inputs and integrating them within the city’s digital twins to enhance city models. To create a data standard for integrating attributes of city physical elements and end-users’ social information and inputs in the same digital ecosystem, the open data model CityGML has been used.

1 – 10 of over 8000