Search results

1 – 10 of 20
Open Access
Article
Publication date: 7 August 2018

Qiang Yi, Stanley Chien, Lingxi Li, Wensen Niu, Yaobin Chen, David Good, Chi-Chih Chen and Rini Sherony

To support the standardized evaluation of bicyclist automatic emergency braking (AEB) systems, test scenarios, test procedures and test system hardware and software tools have…

1589

Abstract

Purpose

To support the standardized evaluation of bicyclist automatic emergency braking (AEB) systems, test scenarios, test procedures and test system hardware and software tools have been investigated and developed by the Transportation Active Safety Institute (TASI) at Indiana University-Purdue University Indianapolis. This paper aims to focus on the development of test scenarios and bicyclist surrogate for evaluating vehicle–bicyclist AEB systems.

Design/methodology/approach

The harmonized general estimates system (GES)/FARS 2010-2011 crash data and TASI 110-car naturalistic driving data (NDD) are used to determine the crash geometries and environmental factors of crash scenarios including lighting conditions, vehicle speeds, bicyclist speeds, etc. A surrogate bicyclist including a bicycle rider and a bicycle surrogate is designed to match the visual and radar characteristics of bicyclists in the USA. A bicycle target is designed with both leg pedaling and wheel rotation to produce proper micro-Doppler features and generate realistic motion for camera-based AEB systems.

Findings

Based on the analysis of the harmonized GES/FARS crash data, five crash scenarios are recommended for performance testing of bicyclist AEB systems. Combined with TASI 110-car naturalistic driving data, the crash environmental factors including lighting conditions, obscuring objects, vehicle speed and bicyclist speed are determined. The surrogate bicyclist was designed to represent the visual and radar characteristics of the real bicyclists in the USA. The height of the bicycle rider mannequin is 173 cm, representing the weighted height of 50th percentile US male and female adults. The size and shape of the surrogate bicycle were determined as 26-inch wheel and mountain/road bicycle frame, respectively. Both leg pedaling motion and wheel rotation are suggested to produce proper micro-Doppler features and support the camera-based AEB systems.

Originality/value

The results have demonstrated that the developed scenarios, test procedures and bicyclist surrogate will provide effective objective methods and necessary hardware and software tools for the evaluation and validation of bicyclist AEB systems. This is crucial for the development of advanced driver assistance systems.

Details

Journal of Intelligent and Connected Vehicles, vol. 1 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 4 August 2021

Ian L. Gordon, Seth Casden and Michael R. Hamblin

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing…

Abstract

Purpose

This study aims to test the effects of Celliant armbands on grip strength in subjects with chronic wrist and elbow pain. Celliant® is a functional textile fabric containing minerals that emit infrared radiation (IR) in response to body heat. IR-emitting fabrics have biological effects including the reduction of pain and inflammation and the stimulation of muscle function.

Design/methodology/approach

A randomized placebo-controlled trial recruited 80 subjects (40 per group) with a six-month history of chronic wrist or elbow pain (carpal tunnel syndrome, epicondylitis or arthritis) to wear an armband (real Celliant or placebo fabric) on the affected wrist or elbow for two weeks. Grip strength was measured by a dynamometer before and after the two-week study.

Findings

For the placebo group, the mean grip strength increased from 47.95 ± 25.14 (baseline) to 51.69 ± 27.35 (final), whereas for the Celliant group, it increased from 46.3 ± 22.02 to 54.1 ± 25.97. The mean per cent increase over the two weeks was +7.8% for placebo and +16.8% for Celliant (p = 0.0372). No adverse effects was observed.

Research limitations/implications

Limitations include the wide variation in grip strength in the participants at baseline measurement, which meant that only the percentage increase between baseline and final measurements showed a significant difference. Moreover, no subjective measurements of pain or objective neurophysiology testes was done.

Practical implications

Celliant armbands are easy to wear and have not been shown to produce any adverse effects. Therefore, there appears to be no barrier to prevent widespread uptake.

Social implications

IR-emitting textiles have been studied for their beneficial effects, both in patients diagnosed with various disorders and also in healthy volunteers for health and wellness purposes. Although there are many types of textile technology that might be used to produce IR-emitting fabrics, including coating of the fabric with a printed layer of ceramic material, incorporating discs of mineral into the garment, the authors feel that incorporating ceramic particles into the polymer fibers from which the fabric is woven is likely to be the most efficient way of achieving the goal.

Originality/value

Celliant armbands appear to be effective in painful upper limb inflammatory disorders, and further studies are warranted. The mechanism of action is not completely understood, but the hypothesis that the emitted IR radiation is absorbed by nanostructured intracellular water provides some theoretical justification.

Open Access
Article
Publication date: 17 June 2019

Stephen Fox, Olli Aranko, Juhani Heilala and Päivi Vahala

Exoskeletons are mechanical structures that humans can wear to increase their strength and endurance. The purpose of this paper is to explain how exoskeletons can be used to…

18137

Abstract

Purpose

Exoskeletons are mechanical structures that humans can wear to increase their strength and endurance. The purpose of this paper is to explain how exoskeletons can be used to improve performance across five phases of manufacturing.

Design/methodology/approach

Multivocal literature review, encompassing scientific literature and the grey literature of online reports, etc., to inform comprehensive, comparative and critical analyses of the potential of exoskeletons to improve manufacturing performance.

Findings

There are at least eight different types of exoskeletons that can be used to improve human strength and endurance in manual work during different phases of production. However, exoskeletons can have the unintended negative consequence of reducing human flexibility leading to new sources of musculoskeletal disorders (MSD) and accidents.

Research limitations/implications

Findings are relevant to function allocation research concerned with manual production work. In particular, exoskeletons could exacerbate the traditional trade-off between human flexibility and robot consistency by making human workers less flexible.

Practical implications

The introduction of exoskeletons requires careful health and safety planning if exoskeletons are to improve human strength and endurance without introducing new sources of MSD and accidents.

Originality/value

The originality of this paper is that it provides detailed information about a new manufacturing technology: exoskeletons. The value of this paper is that it provides information that is comprehensive, comparative and critical about exoskeletons as a potential alternative to robotics across five phases of manufacturing.

Details

Journal of Manufacturing Technology Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 5 October 2018

Sanpatchaya Sirisawasd, Sasitorn Taptagaporn, Chaweewon Boonshuyar and Poramet Earde

The purpose of this paper is to review the prevalence and risk factors of work-related musculoskeletal disorders (WMSDs) among healthcare workers (HCWs) in order to ascertain the…

4630

Abstract

Purpose

The purpose of this paper is to review the prevalence and risk factors of work-related musculoskeletal disorders (WMSDs) among healthcare workers (HCWs) in order to ascertain the occupation with the highest susceptibility to WMSD in the health sector. This paper will also review the effective interventions which have been used to prevent WMSDs among HCWs.

Design/methodology/approach

This study is a literature review of 11 papers related to the prevalence and risk factors of WMSDs and 12 papers about the interventions being used to prevent WMSDs among HCWs. The papers were retrieved from respectable databases such as PubMed, Science Direct, Google Scholar and E-Thesis.

Findings

Nurses belong to the major group of HCWs who had the highest prevalence of WMSDs compared with other health professionals and other hospital workers. Although there are several interventions being commonly used to prevent WMSD risk factors, some interventions were unsuccessful in the prevention of WMSDs in healthcare tasks. Therefore, it is necessary that future research focuses on the tasks of HCWs that are WMSD risk factors and tries to innovate or redesign ergonomic workstations to prevent those risk factors.

Originality/value

The expected benefit of this study is to motivate ergonomists to provide appropriate and innovative interventions to ensure health and safety for nurses and other HCWs.

Details

Journal of Health Research, vol. 32 no. 5
Type: Research Article
ISSN: 2586-940X

Keywords

Open Access
Article
Publication date: 31 July 2019

Yitao Pan, Yuan Chen and Lin Li

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s…

1175

Abstract

Purpose

The purpose of this paper is to propose a two-degrees-of-freedom wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring, in order to improve the robot’s athletic ability, load capacity and rigidity, and to ensure the coordination of multi-modal motion.

Design/methodology/approach

First, based on the rotation transformation matrix and closed-loop constraint equation of the parallel trunk joint mechanism, the mathematical model of its inverse position solution is constructed. Then, the Jacobian matrix of velocity and acceleration is derived by time derivative method. On this basis, the stiffness matrix of the parallel trunk joint mechanism is derived on the basis of the principle of virtual work and combined with the deformation effect of the rope driving pair and the spring elastic restraint pair. Then, the eigenvalue distribution of the stiffness matrix and the global stiffness performance index are used as the stiffness evaluation index of the mechanism. In addition, the performance index of athletic dexterity is analyzed. Finally, the distribution map of kinematic dexterity and stiffness is drawn in the workspace by numerical simulation, and the influence of the introduced spring on the stiffness distribution of the parallel trunk joint mechanism is compared and analyzed. It is concluded that the stiffness in the specific direction of the parallel trunk joint mechanism can be improved, and the stiffness distribution can be improved by adjusting the spring elastic structure parameters of the rope-driven branch chain.

Findings

Studies have shown that the wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism based on spring has a great kinematic dexterity, load-carrying capacity and stiffness performance.

Research limitations/implications

The soft-mixed structure is not mature, and there are few new materials for the soft-mixed mixture; the rope and the rigid structure are driven together with a large amount of friction and hindrance factors, etc.

Practical implications

It ensures that the multi-motion mode hexapod mobile robot can meet the requirement of sufficient different stiffness for different motion postures through the parallel trunk joint mechanism, and it ensures that the multi-motion mode hexapod mobile robot in multi-motion mode can meet the performance requirement of global stiffness change at different pose points of different motion postures through the parallel trunk joint mechanism.

Social implications

The trunk structure is a very critical mechanism for animals. Animals in the movement to achieve smooth climbing, overturning and other different postures, such as centipede, starfish, giant salamander and other multi-legged animals, not only rely on the unique leg mechanism, but also must have a unique trunk joint mechanism. Based on the cooperation of these two mechanisms, the animal can achieve a stable, flexible and flexible variety of motion characteristics. Therefore, the trunk joint mechanism has an important significance for the coordinated movement of the whole body of the multi-sport mode mobile robot (Huang Hu-lin, 2016).

Originality/value

In this paper, based on the idea of combining rigid parallel mechanism with wire-driven mechanism, a trunk mechanism is designed, which is composed of four spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism in series. Its spring-based wire-driven 4SPS/U rigid‒flexible parallel trunk joint mechanism can make the multi-motion mode mobile robot have better load capacity, mobility and stiffness performance (Qi-zhi et al., 2018; Cong-hao et al., 2018), thus improving the environmental adaptability and reliability of the multi-motion mode mobile robot.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 22 August 2023

Mahesh Babu Purushothaman and Kasun Moolika Gedara

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and

1341

Abstract

Purpose

This pragmatic research paper aims to unravel the smart vision-based method (SVBM), an AI program to correlate the computer vision (recorded and live videos using mobile and embedded cameras) that aids in manual lifting human pose deduction, analysis and training in the construction sector.

Design/methodology/approach

Using a pragmatic approach combined with the literature review, this study discusses the SVBM. The research method includes a literature review followed by a pragmatic approach and lab validation of the acquired data. Adopting the practical approach, the authors of this article developed an SVBM, an AI program to correlate computer vision (recorded and live videos using mobile and embedded cameras).

Findings

Results show that SVBM observes the relevant events without additional attachments to the human body and compares them with the standard axis to identify abnormal postures using mobile and other cameras. Angles of critical nodal points are projected through human pose detection and calculating body part movement angles using a novel software program and mobile application. The SVBM demonstrates its ability to data capture and analysis in real-time and offline using videos recorded earlier and is validated for program coding and results repeatability.

Research limitations/implications

Literature review methodology limitations include not keeping in phase with the most updated field knowledge. This limitation is offset by choosing the range for literature review within the last two decades. This literature review may not have captured all published articles because the restriction of database access and search was based only on English. Also, the authors may have omitted fruitful articles hiding in a less popular journal. These limitations are acknowledged. The critical limitation is that the trust, privacy and psychological issues are not addressed in SVBM, which is recognised. However, the benefits of SVBM naturally offset this limitation to being adopted practically.

Practical implications

The theoretical and practical implications include customised and individualistic prediction and preventing most posture-related hazardous behaviours before a critical injury happens. The theoretical implications include mimicking the human pose and lab-based analysis without attaching sensors that naturally alter the working poses. SVBM would help researchers develop more accurate data and theoretical models close to actuals.

Social implications

By using SVBM, the possibility of early deduction and prevention of musculoskeletal disorders is high; the social implications include the benefits of being a healthier society and health concerned construction sector.

Originality/value

Human pose detection, especially joint angle calculation in a work environment, is crucial to early deduction of muscoloskeletal disorders. Conventional digital technology-based methods to detect pose flaws focus on location information from wearables and laboratory-controlled motion sensors. For the first time, this paper presents novel computer vision (recorded and live videos using mobile and embedded cameras) and digital image-related deep learning methods without attachment to the human body for manual handling pose deduction and analysis of angles, neckline and torso line in an actual construction work environment.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 26 November 2018

Ladawan Chutimakul, Suchitra Sukonthasab, Thanomwong Kritpet and Chanai Vannalee

Aging population is on the rise around the world. Strategies to improve quality of life in this population are being implemented. Exercise is one of those strategies that has been…

1933

Abstract

Purpose

Aging population is on the rise around the world. Strategies to improve quality of life in this population are being implemented. Exercise is one of those strategies that has been proven to be effective as it produces many health benefits. The purpose of this paper is to determine the effects of Khon exercise on functional fitness in older persons.

Design/methodology/approach

In total, 44 older people aged 60–65 years were recruited through a senior club in an urban area. They were divided into two groups: the Khon exercise group (performed exercise for 12 weeks, 60 min/day, 3 times/week) and the control group (engaged in routine physical activity). The Senior Fitness Test, which consisted of chair stand, arm curl, 2-min step, chair sit and reach, back scratch, 8-ft up and go, and body mass index, was performed before and at 12 weeks after the exercise.

Findings

After 12 weeks of training, significant differences in chair stand, 2-min step, chair sit and reach, and 8-ft up and go tests were noted between the exercise and control groups.

Originality/value

These findings showed that Khon exercise has positive effects on lower body strength and flexibility, aerobic endurance and balance. Hence, it is recommended for health promotion among older persons.

Details

Journal of Health Research, vol. 32 no. 6
Type: Research Article
ISSN: 2586-940X

Keywords

Open Access
Article
Publication date: 22 July 2019

Wenbin Xu, Xudong Li, Liang Gong, Yixiang Huang, Zeyuan Zheng, Zelin Zhao, Lujie Zhao, Binhao Chen, Haozhe Yang, Li Cao and Chengliang Liu

This paper aims to present a human-in-the-loop natural teaching paradigm based on scene-motion cross-modal perception, which facilitates the manipulation intelligence and robot…

1490

Abstract

Purpose

This paper aims to present a human-in-the-loop natural teaching paradigm based on scene-motion cross-modal perception, which facilitates the manipulation intelligence and robot teleoperation.

Design/methodology/approach

The proposed natural teaching paradigm is used to telemanipulate a life-size humanoid robot in response to a complicated working scenario. First, a vision sensor is used to project mission scenes onto virtual reality glasses for human-in-the-loop reactions. Second, motion capture system is established to retarget eye-body synergic movements to a skeletal model. Third, real-time data transfer is realized through publish-subscribe messaging mechanism in robot operating system. Next, joint angles are computed through a fast mapping algorithm and sent to a slave controller through a serial port. Finally, visualization terminals render it convenient to make comparisons between two motion systems.

Findings

Experimentation in various industrial mission scenes, such as approaching flanges, shows the numerous advantages brought by natural teaching, including being real-time, high accuracy, repeatability and dexterity.

Originality/value

The proposed paradigm realizes the natural cross-modal combination of perception information and enhances the working capacity and flexibility of industrial robots, paving a new way for effective robot teaching and autonomous learning.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 29 January 2018

Virginia P. Stofer, Scott McLean and Jimmy Smith

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been observed to…

1127

Abstract

Purpose

Wrist orthoses are used by occupational therapists to decrease pain, support weak muscles and protect tissues during healing. However, use of wrist orthoses has been observed to produce compensatory movements in other upper extremity joints. This paper aims to determine whether wearing wrist orthoses produced compensatory movements of the elbow in addition to the shoulder when performing drinking and hammering tasks.

Design/methodology/approach

Two twin-axis electrogoniometers were positioned on the elbow and shoulder to track joint movement. The four conditions were drink with orthosis, hammer with orthosis, drink without orthosis and hammer without orthosis. Joint movement was defined as total angular excursion of the joint throughout the performance of the task. Separate 2 × 2 (joint × orthosis) repeated measures analyzes of variance (ANOVA) were used to evaluate differences in joint excursion of the elbow and shoulder joints between orthosis conditions for each task.

Findings

Wearing a wrist orthosis did not change the amount of joint excursion compared to not wearing an orthosis during the drinking and hammering tasks.

Originality/value

Findings suggest that wrist orthoses do not result in statistically significant changes in elbow and shoulder joint movements during simulated drinking and hammering tasks.

Details

Irish Journal of Occupational Therapy, vol. 46 no. 1
Type: Research Article
ISSN: 2398-8819

Keywords

Open Access
Article
Publication date: 30 April 2020

Ausanee Wanchai and Jane M. Armer

Breast-cancer-related lymphedema (BCRL) is a negative condition that affects biopsychosocial aspects of patients treated with breast cancer. Yoga has been reported as one of the…

2168

Abstract

Purpose

Breast-cancer-related lymphedema (BCRL) is a negative condition that affects biopsychosocial aspects of patients treated with breast cancer. Yoga has been reported as one of the complementary and alternative approaches used by patients diagnosed with BCRL. The aim of this systematic review was to explore the effectiveness of yoga on BCRL.

Design/methodology/approach

A systematic literature was performed by searching existing papers from the electronic scientific databases. Five papers were exclusively examined. Four studies were conducted in women with BCRL, and one study was conducted with women at risk for BCRL.

Findings

Four types of yoga were evaluated in relationship with BCRL, namely: the Satyananda Yoga tradition, the modified Hatha yoga, the aerobic yoga training and the Ashtanga-based yoga practices. Four of five included studies reported that decrease in arm volume was not reported for all yoga-type interventions. One study showed no significant evidence that yoga was associated with limb volume change in women at risk of BCRL. Similarly, three studies reported that the change-of-arm-volume measures were not significantly different between the yoga and the control groups or in the same group before and after the yoga program. One quasi-experimental study reported arm volume significantly decreased after attending the yoga program.

Originality/value

This review reported the importance of being aware that yoga is not shown to be an effective strategy for managing or preventing BCRL. However, quality of research methodology, small sample sizes and the limited number of related studies should be acknowledged. Until more rigorous studies are performed, yoga may continue to be used as a complement to traditional therapy under the supervision of certified trainers.

Details

Journal of Health Research, vol. 34 no. 5
Type: Research Article
ISSN: 0857-4421

Keywords

1 – 10 of 20