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Abstract
Purpose – This paper aims to present a human-in-the-loop natural teaching paradigm based on scene-motion cross-modal perception, which
facilitates the manipulation intelligence and robot teleoperation.
Design/methodology/approach – The proposed natural teaching paradigm is used to telemanipulate a life-size humanoid robot in response to a
complicated working scenario. First, a vision sensor is used to project mission scenes onto virtual reality glasses for human-in-the-loop reactions. Second,
motion capture system is established to retarget eye-body synergic movements to a skeletal model. Third, real-time data transfer is realized through publish-
subscribe messaging mechanism in robot operating system. Next, joint angles are computed through a fast mapping algorithm and sent to a slave controller
through a serial port. Finally, visualization terminals render it convenient to make comparisons between two motion systems.
Findings – Experimentation in various industrial mission scenes, such as approaching flanges, shows the numerous advantages brought by natural
teaching, including being real-time, high accuracy, repeatability and dexterity.
Originality/value – The proposed paradigm realizes the natural cross-modal combination of perception information and enhances the working
capacity and flexibility of industrial robots, paving a new way for effective robot teaching and autonomous learning.
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1. Introduction

In recent years, demands for industrial robots with high
intelligence have shown a tremendous growth in military,
medicine, manufacturing and social life. Industrial robots
are increasingly faced up with challenges of executing
complicated tasks in unstructured environments, such as
welding tracking on a curved surface, sorting and placing of
scattered workpieces with surfaces of multiple types, like
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three-way valves and flanges and so on. Many paradigms
are adopted to improve the ability of robots to perform
complex tasks based on data-driven methods (Deisenroth
et al., 2013; Bohg et al., 2014; Mnih et al., 2015; Levine
et al., 2018). However, with limited data, those data-driven
methods alone tend to have a poor performance. Under
such a circumstance, the combination of teaching and
machine learning to cope with the lack of data has achieved
good results (Koenig and Matari�c, 2017; Finn et al., 2017;
Michini et al., 2013; Kassahun et al., 2016; Osentoski et al.,
2012). As a direct way to endow industrial robots with
human’s knowledge, teaching renders the intelligence
development of robots more than possible.
As a matter of fact, traditional teachingmethods are faced with

multiple difficulties. First, when teaching is performed for
complicatedmotions withmultiple degree of freedom (DOF), an
expert is necessary for demonstration and the effect of teaching
highly depends on his knowledge. The numerous frames of
continuous movements will cause a sharp increase in the amount
of teaching information, thus placing a heavy burden on the
expert (Silver et al., 2012; Laskey et al., 2016; Koert et al., 2016).
Second, to facilitate robots to understand human’s teaching
information and to develop intelligence, behavior recognition and
semantic classification are necessary, while conventional
demonstration methods often neglect the transmission of
semantic information (Wächter and Asfour, 2015; Lim, 2016;
Rozo et al., 2016; Alibeigi et al., 2017). Third, the ability to make
decisions based on multiple kinds of sensory information is an
important manifestation of human intelligence while
conventional demonstration methods generally overlook or
misunderstand the relations between different sensory
information (Lim andOkuno, 2014;Noda et al., 2014).
Considering children’s learning process, they observe the

behavior of adults and then reproduce it (Riley et al., 2003).
Such a process is always natural and effective because human
beings share the same way to comprehend scenes and the same
behavioral language. Inspired by this, natural teaching is the
key to overcoming obstacles to the exchange of teaching
information between human and robots. Natural teaching is
actually a branch of human-robot interaction (HRI)
technology, representing a kind of teaching paradigm which is
user-friendly and coordinates human and robot in scene
comprehension. Aimed at completing tasks with specified
human semantic information, natural teaching is an end-to-end
and highly efficient method for interaction with surroundings
or complicated movements. Moreover, fulfilling such tasks is
conducive to establishing a deep understanding of potential
implications from training data through subsequent
intelligence algorithms, thus achieving a high level of
intellectual development.
Scene-motion cross-modal perception constitutes a critical

component of natural teaching. Enlightened by role-playing in
E-sports, the demonstrator is provided with visual information
to perceive the mission scenario of the robot and then
implements movements. The demonstrator’s eye-body
synergic movements are collected as motion information.
Thanks to VR (Virtual Reality) and HRI technology, the robot
and the demonstrator can share the common visual andmotion
information during the whole teaching process. Through such a
perception system, the robot can achieve the cross-modal

combination of scene and motion information, while the
demonstrator can have an overall cognition of the surroundings
from first person view (FPV), analyze complicated information
and make movement decisions. Furthermore, the recording of
intricate multi-DOF movements, as well as the live video
stream, provides the robot with comprehensive scene-motion
information so that the robot can be gradually endowed with
the ability to repeat the same process. In the near future, the
robot can even develop the capability of making autonomous
decisions through such a natural teaching paradigm.
Employing humanoid robots as a platform to verify the natural

teaching paradigm with scene-motion cross-modal perception can
provide numerous advantages. First, since humanoid robots
possess human-like structures and scales that have evolved for
millions of years, the abundant DOF and the complex joints
between links of a humanoid can represent an industrial robot with
an extremely complicated structure. Second, the excellentmobility
potential of humanoid robots renders it possible for them to be
assigned with different tasks (Koenemann et al., 2014). Third,
humanoids can serve as a direct and natural platform for natural
teaching. As they can completely reflect human motion,
demonstrators can easily assess the difference between human
motion and robot imitation during motion synchronization.
Demonstrators can further consider the conversion of postures
fromhuman to the robot and optimize the conversion rules against
corresponding problems (Argall et al., 2009).
Herein we report a human-in-the-loop natural teaching

paradigm with motion-scene cross-modal perception on a life-
size humanoid robot. The robot is established based on InMoov,
an open-sourced 3D printing humanoid robot. It possesses 29
DOF, 22 of which are controlled in this system. The following is
the natural teaching process. First, a vision sensor is employed to
project the mission scene onto the VR glasses. Second, motion
perception captures the motion of human with a set of wearable
sensors and presents the collected motion data in BVH
(BioVision Hierarchy) format. The motion data are transmitted
to an industrial PC (IPC) through TCP/IP and parsed according
to BVH format. Next, the parsed Euler angles are converted to
corresponding joint angles through a fast mapping algorithm and
encapsulated in a communication protocol. At last, IPC sends
joint angles to the slave controller to control the robot. The whole
system has paved a novel, real-time and accurate way for a
natural teaching paradigm on humanoid robots.
This paper is organized as follows. In Section 2, the scene-

motion cross-modal perception system is introduced. Section 3
discusses the setup of the humanoid robot. Section 4 presents the
scheme of real-time motion imitation on the humanoid. Section
5 performs several experiments based on the proposed natural
teaching paradigm. Finally, section 6 deals with the conclusion
about our work.

2. Scene-motion cross-modal perception

The framework of the cross-modal perception system is shown in
Figure 1. Scene perception makes it possible for the demonstrator
to remotely perceive the complicated surroundings around the
robot, while motion perception passes back real-time human
motions to the controller. The combination of scene and motion
perceptions takes full advantage of human’s intelligence because
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each movement in the loop is determined by human and reflected
on the robot.

2.1 Scene perception
Scene perception is achieved through a remote video stream and
multiple display terminals. Figure 2 shows its principle and the
video stream. The main function of scene perception is to stream
the live video recorded by Raspberry Pi Camera to the
demonstrator. Since the camera is installed in one eye of the robot,
the demonstrator wearing VR glasses can make decisions about
movements from FPV. Besides, multiple display terminals make it
possible for users to watch the same video stream on different
electrical devices.

2.1.1 Remote video stream
Raspberry Pi is selected as the processing unit to drive the Pi
camera for remote live video monitoring. The video obtained
from Raspberry Pi is encoded in H.264 format, which is barely
supported in browsers. Hence, FFmpeg (Fast Forward mpeg)
is adopted to convert the H.264 format to the MPEG1 format.
The video stream is then uploaded to an HTTP server through
ws4py. Decoding is completed with JSMpeg, an excellent
MPEG1 video and MP2 audio decoder defined in JavaScript.
At most 30 fps video with a resolution of 1280�960 can be
decoded by JSMpeg. Since JSMpeg is based on JavaScript, the
video streamworks inmostmodern browser (i.e. Firefox, Edge,
Chrome, etc). Moreover, the decoder has a low latency via
WebSockets, thus achieving the real-time feature of our work.

2.1.2Multiple display terminals
Display terminals include VR glasses and webpages. The type
of VR glasses we adopt is Royole Moon, a combination of a
headset, vari-focusing glasses, and a control terminal. The
operating system of RoyoleMoon isMoonOS developed based
on Android.What’s more, it provides free access to the external
network, which means users can access the live video stream
and perceive the mission scene at a distance. However, since
the video capture is accomplished using one camera, all videos
are two-dimensional. It is inevitable that some necessary
information will be lost if the demonstrator watches the screen
alone. Therefore, some external assistance is required to
improve the user experience. For webpage terminals, the
principle is basically the same with VR glasses. Any devices
which have installed a modern browser are accessible to the
low-latency live video stream through a specifiedURL.

2.2Motion perception
To capture motion information, several methods have been
adopted. Gobee et al. (2017) fixes IR sensors and
accelerometer motion sensors to human legs and achieves real-
time control of gaits on a biped humanoid robot. Durdu et al.
(2014) attaches potentiometers to human joints and then
collect motion data. Furthermore, vision sensing technology is
also employed. Several articles (Yavs�an and Uçar, 2016; Ding
et al., 2014; Bindal et al., 2015) utilize Kinect for gesture
recognition and then perform similar actions on robots through
diverse algorithms. Herein motion recording is achieved
through wearable sensors. The motion capture system is
composed of a motion sensor to capture real-time human
motion and a humanmotion retargetingmethod.

2.2.1Motion sensor
A modular system composed of 32 9-axis sensors is adopted as
the motion sensor. It is a set of wearable sensors designed by
NoitomTechnology Ltd. to deliver motion capture technology.
It contains 32 IMUs (Inertial Measurement Unit), each of
which is composed of a 3-axis gyroscope, 3-axis accelerometer,
and 3-axis magnetometer. The static accuracy of each IMU is
61 degree for roll/pitch angle and62 degree for yaw angle. The
system is operated with Axis Neuron Pro (ANP) running on
Windows OS for calibration and management. In addition, a
skeleton model is visualized in ANP to reflect real-time human
motion. Another important feature of ANP is the function to
broadcast BVH data through TCP so that other programs can
obtain and analyze these data.

2.2.2 Human motion retargeting
Motion retargeting is a classic problem which aims to retarget
motion from one character to another while keeping styles of
the original motion (Meng et al., 2017).With this method, real-
time human motion can be displayed on the skeletal model in
ANP through BVH data. As a universal file format for human
feature animation usually adopted in skeleton models, it can
store motion for a hierarchical skeleton, which means that
motion of the child node is directly dependent on the motion of
the parent one (Dai et al., 2010). As shown in Figure 3, a
normal BVH file will consist of several parts as follows.
� HIERARCHY signifies the beginning of skeleton

definition.
� ROOT defines the root of the whole skeleton.

Figure 1 Scene-motion cross-modal perception system

Figure 2 Principle of scene perception
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� OFFSET specifies the deviation of the child joint from its
parent joint, which remains constant.

� CHANNELS contains several parameters. The first
parameter indicates the number of DOF. Usually, only
the root joint has both position data and rotation data.
The rest ones only contain rotation data in the form of
Euler angles. The sequence of rotation hinges on the
sequence mentioned in CHANNELS, i.e. the rotation is
carried out in YXZ order in the example.

� End Site is only tagged in the definition of an end-effector
and describes the lengths of bones through OFFSET.

� MOTION represents the beginning of another section
which describes the states of each joint at each frame.

� Frame Time is the duration of each frame. The rest data
are real-time states of each joint described sequentially in
the HIERARCHY section. Hence, the number of these
data is equal to the that of channels defined in the
HIERARCHY section.

We adopt BVH with no position channels since position values
keep constant. Hence, three rotation values are obtained for
each joint. Accordingly, we can describe human postures
through these Euler angles based on the assumption that
wearable sensors keep fixedwith respect to human body.

3. Setup of the humanoid robot

To realize real-time motion imitation, a humanoid robot is
assembled since it possesses human-like design and is able to
mimic human motion (Rodriguez et al., 2006). However, due to
the complicated structure of the robot and various constraints of
conventional manufacturing methods, it is difficult to fulfill an
elegant design of a dexterous humanoid robot. Fortunately, with
the rapid advancement in additive manufacturing, 3D printing
turns to be more cost-effective. Moreover, 3D printing element is
also becoming stronger, more accurate and therefore more
reliable. 3D-printed humanoid robots like InMoov, Flobi and
iCub have been created to serve as experiment platforms where
research onHRI is conducted.
Here a 3D-printed life-size humanoid robot is established

based on InMoov initiated by Langevin (2014), a French
sculptor in 2012. The whole structure, as well as other

necessary backgrounds, have been illustrated in the previous
work (Gong et al., 2017). 22 out of 29 DOF are controlled
during motion imitation, including 5 DOF for each hand, 2 for
each arm, 3 for each shoulder and 2 for the neck, as shown in
Figure 4. As for control, the slave controller is composed of 4
small Arduino Nano control core boards, each of which can
drive 6 servos with corresponding angles through PWM, and an
Arduino Mega 2560 master board which communicates with
the aforementioned nano nodes via 485 Hub based on the
Modbus RTUcontrol.

4. Real-time imitation of human motion

Thewhole structure of the proposedmethod is shown in Figure 5.
First, the publish-subscribe messaging mechanism and the
designed communication protocol ensures the security of data
transfer. Second, the fast mapping algorithm converts BVH data
into corresponding joint angles. Next, visualization terminals
enable users to make comparisons between different but
simultaneousmotion systems.

4.1 Data transmission
During data transmission, communication protocols and
quantization are necessary to prevent undesirable communication
delays and packet dropouts (Liu et al., 2016). Herein the publish-
subscribe messaging mechanism and a specific protocol are
designed to realize the reliable data transmission. To be more

Figure 3 An Example of BVH Format

Figure 4 DOF of humanoid robot (DOF of fingers are not displayed)

Figure 5 Whole structure of proposed method

Natural teaching for humanoid robot

Wenbin Xu et al.

Industrial Robot: the international journal of robotics research and application

Volume 46 · Number 3 · 2019 · 404–414

407



specific, the publish-subscribe messaging mechanism allows
nodes, which are executables after compilation, to publish
messages or subscribe to a topic (Wang et al., 2016). Topics are
asynchronous and highly efficient. The whole data stream is
mainly enabled through such amessagingmechanism, as shown in
Figure 6, where ellipses stand for nodes and squares represent
topics:
� Socket_node connects with the win32 console through

TCP/IP and then advertises the topic, PN_node/data.
� Mapping_node subscribes to the previous topic and then

converts BVH data to joint angles, which are then
published to another topic called Joint_angle.

� joint_state_publisher achieves the real-time simulation of
the robot model using the calculated joint angles.

� Serial_node realizes the serial communication between the
master and slave computers.

While topics have been successfully implemented in the data
transfer process, reliable communication between the
master and slave computers is still necessary to control the
robot. Before transmission, all these data including a time
stamp and joint angles are quantized to integers. The
communication protocol contains 2 bits of time stamp data,
22 bits of position data corresponding to each joint, and
2 bits of CRC16 check code which are generated according
to prior 27 bits to ensure the safety of data transfer, as shown
in Figure 7.

4.2Mapping algorithm
Several methods have been adopted to achieve motion
imitation. Riley et al. (2003) computes joint angles through
a fast full-body inverse kinematics (IK) method. The full-
body IK problem is divided into many sub-problems to
realize real-time imitation on a Sarcos humanoid robot with
30 DOF. Koenemann et al. (2014) realizes complex whole-
body motion imitation on a Nao humanoid based on the
positions of end-effectors and center of mass. By actively
balancing the center of mass over the support polygon, the
proposed approach enables the robot to stand on one foot as
the demonstrator does. Durdu et al. (2014) classifies the
collected data with the assistance of ANN to perform
movements on the robot. Herein, a fasting mapping
algorithm is employed to realize the transformation.
To make the robot imitate human motion, the key point is

how to compute the corresponding joint angles from BVH
data. BVH has provided us with three euler angles for each
node, enabling us to ascertain the rotationmatrix between child
and parent links. Denote euler angles with a rotation order of
ZYX as w ; u ; c , the rotation matrix of child frame with respect
to parent frame is:

Rparent
child ¼
cosw �sinw 0

sinw cosw 0

0 0 1

0
BB@

1
CCA

cosu 0 sinu

0 1 0

�sinu 0 cosu

0
BB@

1
CCA

1 0 0

0 cosc �sinc

0 sinc cosc

0
BB@

1
CCA

(1)

To describe themotion quantitatively, here we consider human
motion as a sequence of rotation matrices. fi is the rotation
matrix at BVH frame i:

fi ¼
n
RLForearm
LHand ;RLArm

LForearm;R
Body
LArm;R

Body
Head;

RRForearm
RHand ;RRArm

RForearm;R
Body
RArm

o
(2)

Thus, each posture is defined as a sequence of rotation
matrices at frame i, i.e. RLForearm

LHand stands for the rotation
matrix between left hand and left forearm. Similarly, we can
also define robot motion as another sequence. The goal is to
eliminate the difference between each corresponding
rotation matrix of human and robot as much as possible.
Figure 8 states the mapping problem. On one hand, human,
with physiological constraints, cannot have 3 rotational
DOF at each joint and some of them are not completely
independent. On the other hand, due to mechanical
constraints, many joints of the humanoid are also unable to
rotate in three independent directions. Hence, each joint
requires respective discussion for the mapping algorithm.
Thanks to the structural symmetry, the algorithms for

RLJoint2
LJoint1 and RRJoint2

RJoint1 share the same principle.

4.2.1 Shoulder joint
The first case is the mapping between shoulders, which entails
conversion from 3 human DOF to 3 robot DOF. Three
rotational joints are installed on each shoulder part of InMoov
and their axes of rotation can be approximately treated as
perpendicular to each other.Denote the joint angles of 3 shoulder
joints as respectively a, b , g and the rotation matrix of the arm
link with respect to the body can be similarly expressed as:

RBody
Arm ¼
cosa �sina 0

sina cosa 0

0 0 1

0
BB@

1
CCA

cosb 0 sinb

0 1 0

�sinb 0 cosb

0
BB@

1
CCA

1 0 0

0 cosg �sing

0 sing cosg

0
BB@

1
CCA

(3)

With equations (1) and (3) , we can derive a one-to-one
correlation:

a ¼ w ; b ¼ u ; g ¼ c (4)

Figure 6 Visualized data stream
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But there’s still one thing that needs to be noticed. Since the
mechanical structure of the robot has determined the rotation
order of three joints between body and arm, the rotation order
of euler angles in BVH should be set to be the same, which in
our case is ZYX.

4.2.2 Elbow joint
The mapping between elbow joints entails the conversion from
2 human DOF to 1 robot DOF. Human elbows are able to
bend and rotate while those of the robot can only bend. Then
we need to compute the joint angle for bending, which is X, as
shown in Figure 9. With the assumption that sensors are fixed
with respect to the human body and the x-direction is along the
forearm link, we can derive the following equations:

x̂2
2 ¼ ð1; 0; 0ÞT (5)

x̂2
1 ¼ R1

2x̂2
2 ¼ ðcoswcosu ; coswsinu ;�sinu ÞT (6)

<x̂2
1; x̂1

1 >¼ arccosðcoswcosu Þ (7)

X ¼ p � <x̂2
1; x̂1

1 > ¼ p � arccosðcoswcosu Þ (8)

R1
2 stands for the rotation matrix of frame x2y2z2 with respect to

x1y1z1. x̂1
1 is a unit vector of x1 in frame x1y1z1.

4.2.3 Neck joint
Mapping between neck joints requires the conversion from 3
human DOF (w ; u ; c ) to 2 robot DOF (a, b ). Due to the
mechanical constraints, only rotations in two directions can be
retained. The solution to this case resembles that for the
shoulder joint and should be written as

a ¼ w ; b ¼ u (9)

4.3 Visualization terminals
On one hand, in the display of human motion collected from
the motion sensor, ANP can visualize the aforementioned
skeletal model, where each joint possesses three DOF despite
human’s physiological constraints.
On the other hand, to visualize motion on the humanoid and

to make the simulation more convenient, another visualization
scheme is provided with the assistance of robot operating
system (ROS). A 3D visualization model is created in URDF
(Unified Robot Description Format), a language based on
XML and designed to describe the robot simulation model
universally in ROS system, including the shape, size, and color,
kinematic and dynamic characteristics of themodel.Wang et al.
(2016) has introduced the basic grammars. However, the
highly repetitive mechanical structure of InMoov makes it
arduous to write a URDF manually. Hence we resort to a
powerful tool calledXacro (XMLMacros). Xacro is adopted to
reuse the same structure for two different parts, i.e. left arms
and right arms and to auto-generate a URDF file. Fundamental
grammars are shown in Table I. After importing STL files with
scale adjustments, the robot model can operate with the
computed joint angles in RVIZ, a 3D visualization tool in ROS.
These two visualization terminals are shown in Figure 10.

5. Experiment

This section designs several experiments to demonstrate the
accuracy, repeatability, and dexterity of the proposed natural
teaching paradigm and discusses the experimental results.

5.1 Accuracy
First, the accuracy of the control method is verified with several
motion imitation experiments. Snapshots of postures are taken,
including various positions of two arms, face orientations and
movements of fingers. The results can be examined in Figure 11
and Figure 12. For these complicated gestures, the high degree
of similarity between the demonstrator and the humanoid robot
has proven that the robot can successfully follow the upper limb
motion of the demonstrator, thus reflecting the feasibility and
accuracy of our proposed method. Moreover, the synchronous

Figure 7 Designed communication protocol

Figure 8 Three motion systems with different constraints

Figure 9 Elbow mapping
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latency of fewer than 0.5 seconds validates the real-time
performance.
To further illustrate accuracy, the second experiment is

carried out to measure the angle errors for individual motions.
Figure 13 shows the rotation directions and initial gestures.
The angle errors for three motions are measured and plotted in
Figure 14 and it follows Error ¼ jAngleRobot � AngleHumanj: The
generally small errors are acceptable for natural teaching and
further prove that the motion imitation system possess high
accuracy.

However, there are still some limitations. The first one is the
difference between the structures of human and robot. Each of
our arms has 7 DOF but the robot has only 5 and the rotational
axes of the wrists are not the same. Besides, for some joints, the
range of movement is limited due to its mechanical constraints.
The second one is the mismatch between the skeletal model
visualized through BVH data and the demonstrator’s real
motion. Revolution of each joint is achieved through skeletons
in the human body, while the wearable sensors can only remain
fixed to the skin or clothes. The angular displacements between
our skin and skeletons cause the measurement error. Other
factors include the accumulated drift errors and different
positions of wearable sensors relative to human bodies.
Nevertheless, there are still some possible solutions to these
limitations. For example, sensors can be bound tightly to limbs
in case of relative displacement. Human motion can be
confined to a certain range to achieve a higher accuracy.
Reasonable compensations for angular error can also be
designed to render themotion retargetingmore reliable.

5.2 Repeatability
After the demonstration is completed, the robot is expected to
repeat the same motion, which means high repeatability is
desired. To verify the repeatability of the proposed natural
teaching paradigm, an experiment is carried out where the
robot is expected to approach the same point with its index
finger. The distance errors are listed in Table II. The average
distance error is 6.8mm, which is relatively small compared to
its size. Aging of actuators, frictions in transmission
mechanisms and instability of power supply may contribute to
these gross distance errors.
To further illustrate the repeatability, another more

complicated teaching experiment is carried out. Industrial
robots are often required to repeat precise operations. Hence,

Table I Fundamental grammars of Xacro

Command Definition Usage

Property <xacro:property name=“pi” value=“3.14”/> < � � � value = “${2�pi}”� � �/>
Argument <xacro:arg name=“use_gui” default=“false”/> < � � �\ use_gui:= true � � �/>
Macro <xacro:macro name=“arm” params=“side”/> <xacro:arm side=“left”/>
Including <xacro:include filename=“other_file.xacro”/>

Figure 10 Different visualization terminals for different motion
systems

Figure 11 Experiments of different gestures

Figure 12 Comparison between Fingers
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in the experiment, the demonstrator first teaches the robot to
approach the left and right holes of 3 flanges in sequence and
then the robot is requested to approach 6 holes continuously
and automatically in the following experiments without
demonstration. The diameter of these holes is close to that of
the fingertip. Figure 15 shows the teaching process and
Table III shows the success rates. The experiment is carried out
5 times and failure mainly happens when the finger collides
with the flange due to accumulated translational errors. The
high success rate can validate the high repeatability and
reliability of the proposed natural teaching paradigm. Once
the demonstration is completed and the desired position of the
end-effector is also reached, the robot can repeat the
same motion using the recorded joint angles during the whole
process.

5.3 Dexterity
With the proposed natural teaching paradigm, the humanoid
robot is capable of accomplishing complicated movements.
Two experiments are conducted to demonstrate the dexterity
of natural teaching. First, an eye-body synergic experiment is
performed via scene-motion cross-modal perception. In the
experiment, the robot is confronted with a complicated
situation where flanges and other things heap up together on
the table. As is the same with the aforementioned teaching
experiment, the robot is expected to approach the inner circle
of each flange with its index finger. The experimental results are
shown in Figures 16-18.
The second one is the classical experiment of obstacle

avoidance. As shown in Figure 19, the end-effector needs to
cross the obstacle first before it reaches the desired position and
orientation. The trajectory is generated by means of natural
teaching. In such a complicated mission scene, motion
planning always consumes a great amount of computation and
time, while natural teaching can fully utilize human’s
perception and decision-making ability, making it more
convenient and less time-consuming. The scene-motion cross-
modal perception enables human to perceive the surroundings

Figure 13 Snapshots for three individual motions

Figure 14 Angle error between human and robot

Table II Distance error

Experiment no.
Distance error

Xa/mm Ya/mm Rb/mm

1 0.0 0.0 0.0
2 2.6 �4.1 4.9
3 �14.3 2.2 14.5
4 �4.8 0.4 4.8
5 �8.4 �2.2 8.7
6 �10.4 �0.5 10.4
7 �13.8 �3.2 14.2
8 �7.3 2.3 7.7
9 �3.0 �1.2 3.2
10 0.0 0.0 0.0
Avgc /mm �5.9 �0.6 6.8
jAvgc j/mm 6.5 1.5 6.8

Notes: a The directions of X and Y are shown in Figure 15(a). b R
represents the distance error from the expected point and it follows
R ¼ sqrt X2 1 Y2ð Þ. c Avg is the abbreviation for average values
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around the robot and the robot to reproduce human’s motions.
Hence, complicatedmissions can usually be accomplished with
natural teaching at aminimum cost.

6. Conclusions

This paper presents a novel natural teaching paradigm for a
humanoid robot. A perception system composed of a vision
sensor and a motion capture system realizes the cross-modal
combination of scene and motion information. Through
multiple visualization terminals for different motion systems, a
fast mapping algorithm and reliable data transfermethods, real-
timemotion imitation is accomplished. Several experiments are
designed to validate the accuracy, repeatability, and dexterity of
the proposed natural teaching paradigm. Through natural
teaching from FPV, human intelligence builds connections
between scene information and movement policy, thus making
it possible for robots to make autonomous decisions based on

Figure 15 Demonstration of approaching six holes

Table III Results of repeating process

Experiment no. a b c d e f

1 S S S S S S
2 S S S S S S
3 S S S S S F
4 S S S F S S
5 S S F S S S
Success rate (%) 100 100 80 80 100 80

Notes: a, b, c, d, e and f represent each hole in Figure 15. F stands for
failure and S stands for success

Figure 16 Approaching an inclined flange

Figure 17 Approaching a vertical flange

Figure 18 Approaching an occluded flange

Figure 19 Snapshots of end-effector crossing obstacles
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cross-modal perception. Future work will lay more emphasis on
the development of the perception system to improve the user
experience as well as the accuracy of motion imitation.
Encouraged by Tri-Co Robot initiative (Ding et al., 2017), we
hope this work will further contribute to the enhancement of
industrial robot intelligence.
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