Search results

1 – 10 of 10
Article
Publication date: 10 May 2024

Adnan Rasul, Saravanan Karuppanan, Veeradasan Perumal, Mark Ovinis and Mohsin Iqbal

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental…

Abstract

Purpose

The stress concentration factor (SCF) is commonly utilized to assess the fatigue life of a tubular T-joint in offshore structures. Parametric equations derived from experimental testing and finite element analysis (FEA) are utilized to estimate the SCF efficiently. The mathematical equations provide the SCF at the crown and saddle of tubular T-joints for various load scenarios. Offshore structures are subjected to a wide range of stresses from all directions, and the hotspot stress might occur anywhere along the brace. It is critical to incorporate stress distribution since using the single-point SCF equation can lead to inaccurate hotspot stress and fatigue life estimates. As far as we know, there are no equations available to determine the SCF around the axis of the brace.

Design/methodology/approach

A mathematical model based on the training weights and biases of artificial neural networks (ANNs) is presented to predict SCF. 625 FEA simulations were conducted to obtain SCF data to train the ANN.

Findings

Using real data, this ANN was used to create mathematical formulas for determining the SCF. The equations can calculate the SCF with a percentage error of less than 6%.

Practical implications

Engineers in practice can use the equations to compute the hotspot stress precisely and rapidly, thereby minimizing risks linked to fatigue failure of offshore structures and assuring their longevity and reliability. Our research contributes to enhancing the safety and reliability of offshore structures by facilitating more precise assessments of stress distribution.

Originality/value

Precisely determining the SCF for the fatigue life of offshore structures reduces the potential hazards associated with fatigue failure, thereby guaranteeing their longevity and reliability. The present study offers a systematic approach for using FEA and ANN to calculate the stress distribution along the weld toe and the SCF in T-joints since ANNs are better at approximating complex phenomena than standard data fitting techniques. Once a database of parametric equations is available, it can be used to rapidly approximate the SCF, unlike experimentation, which is costly and FEA, which is time consuming.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 August 2023

Nor Salwani Hashim, Fatimah De’nan and Norbaya Omar

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one…

Abstract

Purpose

Basically, connections are used to transfer the force supported by structural members to other parts of the structure. The flush end-plate bolted beam to column connection is one type that has been widely used because of its simplicity in fabrication and rapid site erection. The purpose of this study is to determine the moment-rotation curve, moment of resistance (MR) and mode of failure, and the results were compared with existing results for normal flat web connections.

Design/methodology/approach

In this study, the connection modeled was the flush end-plate welded with triangular web profile (TriWP) steel beam section and then bolted to a UKC column flange. The bolted flush end-plate semi-rigid beam to column connection was modeled using finite element software. The specimen was modeled using LUSAS 14.3 finite element software, with dimensions and parameters of the finite element model sizes being 200 × 200 × 49.9 UKC, 200 × 100 × 17.8 UKB and 200 × 100 with a thickness of 20 mm for the endplate.

Findings

It can be concluded that the MR obtained from the TriWP steel beam section is different from that of the normal flat web steel beam by 28%. The value of MR for the TriWP beam section is lower than that of the normal flat web beam section, but the moment ultimate is higher by 21% than the normal flat web. Therefore, it can be concluded that the TriWP section can resist more acting force than the normal flat web section and is suitable to be used as a new proposed shape to replace the normal flat web section for a certain steel structure based on the end-plate connection behavior.

Originality/value

As a result, the TriWP section has better performance than the flat web section in resisting MR behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 March 2023

Nazmiye Tufan Tolmaç and Özlenen Erdem İşmal

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Abstract

Purpose

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Design/methodology/approach

Experiments were conducted using different types of materials in FDM 3D printers until the sufficient flexibility was achieved to create textile-like structures. During the research, properties of polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) were observed. Geometrical patterns were printed and each of them gave a different result depending on the pattern. Based on the information obtained from the experiments, a garment collection with four total looks was designed inspired by Vivaldi’s “Four Seasons”.

Findings

Among the materials used, TPU, a flexible filament, yielded the best results. Because of the rigid properties of PLA and ABS, chain-like structures were printed to create relatively flexible surfaces, but the results were still not successful enough to create a clothing material. Therefore, TPU was preferred for the garment material selection.

Originality/value

In this study, combinations of 3D printed flexible structures and different types of fabrics were used to create a garment collection. It was concluded that, with the right material selection, 3D printing can be used as an alternative method to create a new aesthetic language in fashion design.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 May 2023

Hongliang Yu, Zhen Peng, Zirui He and Chun Huang

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and…

115

Abstract

Purpose

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and specific characteristics of engineering projects in China and then to assess the maturity level of the technology in the application of domestic engineering projects more scientifically.

Design/methodology/approach

The research follows a qualitative and quantitative analysis method. In the first stage, the structure of the maturity model is constructed and the evaluation index system is designed by using the ideas of the capability maturity model and WSR methodology for reference. In the second stage, the design of the evaluation process and the selection of evaluation methods (analytic hierarchy process method, multi-level gray comprehensive evaluation method). In the third stage, the data are collected and organized (preparation of questionnaires, distribution of questionnaires, questionnaire collection). In the fourth stage, the established maturity evaluation model is used to analyze the data.

Findings

The evaluation model established by using multi-level gray theory can effectively transform various complex indicators into an intuitive maturity level or score status. The conclusion shows that the application maturity of building steel structure welding robot technology in this project is at the development level as a whole. The maturity levels of “WuLi – ShiLi – RenLi” are respectively: development level, development level, between starting level and development level. Comparison of maturity evaluation values of five important factors (from high to low): environmental factors, technical factors, management factors, benefit factors, personnel and group factors.

Originality/value

In this paper, based on the existing research related to construction steel structure welding robot technology, a quantitative and holistic evaluation of the application of construction steel structure welding robot technology in domestic engineering projects is conducted for the first time from a project perspective by designing a maturity evaluation index system and establishing a maturity evaluation model. This research will help the project team to evaluate the application level (maturity) of the welding robot in the actual project, identify the shortcomings and defects of the application of this technology, then improve the weak links pertinently, and finally realize the gradual improvement of the overall application level of welding robot technology for building steel structure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 December 2023

Niveen Badra, Hosam Hegazy, Mohamed Mousa, Jiansong Zhang, Sharifah Akmam Syed Zakaria, Said Aboul Haggag and Ibrahim Abdul-Rashied

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel…

Abstract

Purpose

This research aims to create a methodology that integrates optimization techniques into preliminary cost estimates and predicts the impacts of design alternatives of steel pedestrian bridges (SPBs). The cost estimation process uses two main parameters, but the main goal is to create a cost estimation model.

Design/methodology/approach

This study explores a flexible model design that uses computing capabilities for decision-making. Using cost optimization techniques, the model can select an optimal pedestrian bridge system based on multiple criteria that may change independently. This research focuses on four types of SPB systems prevalent in Egypt and worldwide. The study also suggests developing a computerized cost and weight optimization model that enables decision-makers to select the optimal system for SPBs in keeping up with the criteria established for that system.

Findings

In this paper, the authors developed an optimization model for cost estimates of SPBs. The model considers two main parameters: weight and cost. The main contribution of this study based on a parametric study is to propose an approach that enables structural engineers and designers to select the optimum system for SPBs.

Practical implications

The implications of this research from a practical perspective are that the study outlines a feasible approach to develop a computerized model that utilizes the capabilities of computing for quick cost optimization that enables decision-makers to select the optimal system for four common SPBs based on multiple criteria that may change independently and in concert with cost optimization during the preliminary design stage.

Social implications

The model can choose an optimal system for SPBs based on multiple criteria that may change independently and in concert with cost optimization. The resulting optimization model can forecast the optimum cost of the SPBs for different structural spans and road spans based on local unit costs of materials cost of steel structures, fabrication, erection and painting works.

Originality/value

The authors developed a computerized model that uses spreadsheet software's capabilities for cost optimization, enabling decision-makers to select the optimal system for SPBs meeting the criteria established for such a system. Based on structural characteristics and material unit costs, this study shows that using the optimization model for estimating the total direct cost of SPB systems, the project cost can be accurately predicted based on the conceptual design status, and positive prediction outcomes are achieved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 September 2023

Kangning Liu, Bon-Gang Hwang, Jianyao Jia, Qingpeng Man and Shoujian Zhang

Informal learning networks are critical to response to calls for practitioners to reskill and upskill in off-site construction projects. With the transition to the coronavirus…

Abstract

Purpose

Informal learning networks are critical to response to calls for practitioners to reskill and upskill in off-site construction projects. With the transition to the coronavirus disease 2019 (COVID-19) pandemic, social media-enabled online knowledge communities play an increasingly important role in acquiring and disseminating off-site construction knowledge. Proximity has been identified as a key factor in facilitating interactive learning, yet which type of proximity is effective in promoting online and offline knowledge exchange remains unclear. This study takes a relational view to explore the proximity-related antecedents of online and offline learning networks in off-site construction projects, while also examining the subtle differences in the networks' structural patterns.

Design/methodology/approach

Five types of proximity (physical, organizational, social, cognitive and personal) between projects members are conceptualized in the theoretical model. Drawing on social foci theory and homophily theory, the research hypotheses are proposed. To test these hypotheses, empirical case studies were conducted on two off-site construction projects during the COVID-19 pandemic. Valid relational data provided by 99 and 145 project members were collected using semi-structured interviews and sociometric questionnaires. Subsequently, multivariate exponential random graph models were developed.

Findings

The results show a discrepancy arise in the structural patterns between online and offline learning networks. Offline learning is found to be more strongly influenced by proximity factors than online learning. Specifically, physical, organizational and social proximity are found to be significant predictors of offline knowledge exchange. Cognitive proximity has a negative relationship with offline knowledge exchange but is positively related to online knowledge exchange. Regarding personal proximity, the study found that the homophily effect of hierarchical status merely emerges in offline learning networks. Online knowledge communities amplify the receiver effect of tenure. Furthermore, there appears to be a complementary relationship between online and offline learning networks.

Originality/value

Proximity offers a novel relational perspective for understanding the formation of knowledge exchange connections. This study enriches the literature on informal learning within project teams by revealing how different types of proximity shape learning networks across different channels in off-site construction projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 April 2024

Jun Zhao, Hao Zhang, Junwei Liu, Yanfen Gong, Songqiang Wan, Long Liu, Jiacheng Li, Ziyi Song, Shiyao Zhang and Qingrui Li

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation…

Abstract

Purpose

Based on the weak seismic performance and low ductility of coupled shear walls, engineered cementitious composites (ECC) is utilized to strengthen it to solve the deformation problem in tall buildings more effectively and study its mechanical properties more deeply.

Design/methodology/approach

The properties of reinforced concrete coupled shear wall (RCCSW) and reinforced ECC coupled shear wall (RECSW) have been studied by numerical simulation, which is in good agreement with the experimental results. The reliability of the finite element model is verified. On this basis, a detailed parameter study is carried out, including the strength and reinforcement ratio of longitudinal rebar, the placement height of ECC in the wall limb and the position of ECC connecting beams. The study indexes include failure mode and the skeleton curve.

Findings

The results suggest that the bearing capacity of RECSW is significantly affected by the ratio of longitudinal rebar. When the ratio of longitudinal rebar increases from 0.47% to 3.35%, the bearing capacity of RECSW increases from 250 kN to 303 kN, an increase of 21%. The strength of longitudinal rebar has little influence on the bearing capacity of RECSW. When the strength of the longitudinal rebar increases, the bearing capacity of RECSW increases little. The failure mode of RECSW can be improved by lowering the casting height of the ECC beam in a certain range.

Originality/value

In this paper, ECC is used to strengthen the coupled shear wall, and the accuracy of the finite element model is verified from the failure mode and skeleton curve. On this basis, the casting height of the ECC casting wall limb, the strength and reinforcement ratio of longitudinal rebar and the position of the ECC beam are studied in detail.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Access

Year

All dates (10)

Content type

Earlycite article (10)
1 – 10 of 10