Search results

1 – 10 of 110
Article
Publication date: 22 November 2021

Arvind K. Agrawal and R. Ganesh Narayanan

The current work aims to propose a finite element (FE) simulation methodology to predict the formability of friction stir processed (FSPed) tubes by end forming. Moreover, a…

Abstract

Purpose

The current work aims to propose a finite element (FE) simulation methodology to predict the formability of friction stir processed (FSPed) tubes by end forming. Moreover, a strain mapping method is also presented to predict the end forming instabilities.

Design/methodology/approach

In this work, FE simulation of end forming of raw tubes and FSPed AA6063-T6 tubes are done using Abaqus (explicit) incorporating anisotropic properties of the raw tube and FSPed zone. Actual thickness of the FSPed zone is also implemented. Expansion, reduction and beading are the end forming operations considered. Load requirement and instabilities are predicted. A new method “strain mapping method” is followed to predict the failure instabilities in expansion and beading, while during reduction, wrinkling is predicted by FE simulations. Lab scale experiments on FSP and end forming are done for validation at various rotational speeds.

Findings

Results reveal that in the case of expansion and reduction of FSPed tubes, forming load predictions are accurate, while in beading, after initiation of bead, predictions are not accurate. Experimental observation on the type of instability is consistently predicted during numerical simulations. Prediction of displacement at failure by strain mapping method is encouraging in most of the cases including those that are FSPed. Hence, it is suggested that the method can be utilized to evaluate the onset of failure during tube expansion and beading.

Originality/value

FE simulation methodology including anisotropic properties of raw tube and FSPed tubes is proposed, which is not attempted until now even for normal tubes. Strain mapping method is easy to implement for instability predictions, which is done usually by failure theories and forming limit diagram.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 December 2004

Jaroslav Mackerle

Sheet metal forming is a process of shaping thin sheets of metal by applying pressure through male or female dies or both. In most of used sheet‐formating processes the metal is…

4549

Abstract

Sheet metal forming is a process of shaping thin sheets of metal by applying pressure through male or female dies or both. In most of used sheet‐formating processes the metal is subjected to primarily tensile or compressive stresses or both. During the last three decades considerable advances have been made in the applications of numerical techniques, especially the finite element methods, to analyze physical phenomena in the field of structural, solid and fluid mechanics as well as to simulate various processes in engineering. These methods are useful because one can use them to find out facts or study the processes in a way that no other tool can accomplish. Finite element methods applied to sheet metal forming are the subjects of this paper. The reason for writing this bibliography is to save time for readers looking for information dealing with sheet metal forming, not having an access to large databases or willingness to spend own time with uncertain information retrieval. This paper is organized into two parts. In the first one, each topic is handled and current trends in the application of finite element techniques are briefly mentioned. The second part, an Appendix, lists papers published in the open literature. More than 900 references to papers, conference proceedings and theses/dissertations dealing with subjects that were published in 1995‐2003 are listed.

Details

Engineering Computations, vol. 21 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

1067

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 13 October 2023

Ying Ying Feng, Yue Jia, Xiao Qian Sun, Guo Peng Chen and Zong An Luo

A new backward punch shape was designed and used in the hydroforming process of double-layer Y-shaped tubes to achieve uniform wall thickness. This study focuses on the…

Abstract

Purpose

A new backward punch shape was designed and used in the hydroforming process of double-layer Y-shaped tubes to achieve uniform wall thickness. This study focuses on the implementation and effectiveness of this novel punch shape.

Design/methodology/approach

A numerical simulation and experimental validation of the hydroforming process of double-layer Y-shaped tubes under various backward punch, replenishment ratios (left and right feed ratios) and internal pressure loading paths was performed using finite elements. During the hydroforming process, an analysis was made on the distribution of stress, strain and wall thickness in both the inner and outer layers of the Y-shaped conduit.

Findings

The novel backward punch parallel to the main tube has been found to improve the distribution of wall thickness in Y-shaped tubes. By controlling the feeding ratio and modifying the loading path of the internal pressure, it is possible to obtain the optimal forming part of the double-layer Y-shaped tube. The comparison between the simulation and experimental results of the double-layer Y-shaped tube formed under the optimal path indicates that the error is within 5% and the distribution of wall thickness is consistent.

Originality/value

A novel backward punch technique is employed to control the hydroforming process in a Y-shaped tube. A study on hydroforming of double-layer Y-shaped tubes with asymmetric features and challenging forming conditions is being suggested.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 June 2016

Feifei Zhang, Jieshi Chen and Jun Chen

– The purpose of this paper is to analyze theoretically the influence of normal stress on the formability of aluminum alloy sheets in non-linear strain paths.

Abstract

Purpose

The purpose of this paper is to analyze theoretically the influence of normal stress on the formability of aluminum alloy sheets in non-linear strain paths.

Design/methodology/approach

Four loading modes of non-linear strain paths are investigated in detail to consider the effect of normal stress on formability of aluminum alloy sheets.

Findings

Results show that the influence of normal stress in the first stage can be ignored. However, the normal stress in the second stage enhances the formability of aluminum alloy sheets obviously. Besides, the normal stress in the second stage is found to have larger effect on forming limit stress than that in the first stage.

Research limitations/implications

Maybe more experiment data should be obtained to support the theoretical findings.

Originality/value

This current study provides a better understanding of normal stress effect on the formability of aluminum alloy sheets in non-linear strain paths. Since the reacting stage of normal stress play important roles in normal stress effect on the formability of aluminum alloy sheets, the insight obtained in this paper will help to judge the instability of aluminum alloy sheets in complex forming processes with normal stress reacting on the sheet or tube.

Details

Engineering Computations, vol. 33 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4540

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 December 2019

Jianping Ma, Lianfa Yang, Yulin He and Jian Guo

This paper aims to study frictional characteristics of thin-walled tubes in the liquid impact forming (LIF) process.

Abstract

Purpose

This paper aims to study frictional characteristics of thin-walled tubes in the liquid impact forming (LIF) process.

Design/methodology/approach

LIF experiments under various impacting velocities were performed on SUS304 stainless steel tubes with various guiding lengths on a custom-designed measurement system to investigate the effects of impacting velocity and guiding length on the coefficient of friction (COF) in the guiding zone.

Findings

The results indicate that the COF changes dynamically in the guiding zone and decreases with the deformation process. The reduction range of the COF is wider in LIF than in both the conventional and pulsating hydroforming (THF), which may be contributed to the impacting velocities in a short time. Moreover, the COF decreases faster in the first half of the LIF process than in the second half. Under different impacting velocities and guiding lengths, the decreasing rate of the COF in the first half is more sensitive and obvious than that in the second half.

Originality/value

A method for determining the COF in the guiding zone in LIF is proposed and the frictional characteristics in LIF are studied. Comparing the COF of tubes in conventional THF, pulsating THF and the LIF process is valuable for improving and predicting the tubular formability in various hydraulic environments for industrial production.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0269

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1451

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 1990

B. Kazimierzak, M. Prignon, Ch. Lecomte‐Mertens and D. Coutsouradis

Developments in higher temperature exchangers and other applications, require high strength as well as oxidation resistance at very high temperatures. In order to meet such…

Abstract

Developments in higher temperature exchangers and other applications, require high strength as well as oxidation resistance at very high temperatures. In order to meet such requirements, Dour Metal has developed the ODM a new range of oxide dispersion strengthened (ODS) iron based materials. Compositional and thermomechanical manipulations can be used to develop the structure enabling the service temperature to be increased up to about 1200°C. Typical rupture strengths are presented for temperatures ranging from 900 to 1100°C. Data on oxidation and corrosion properties of various compositions are also presented. The emphasis is given to alloy ODM 751 on which most recent work has been performed. The composition of the alloy is 16.5% Cr‐4.5% Al‐0.6% Ti‐1.5% Mo‐0.5% Y2O3‐bal Fe and provides the best compromise between strength, formability and oxidation resistance. Measurements of longitudinal creep at 1100°C to 1200°C on ODM 751 tubes show the outstanding properties of the alloy in this range of temperatures.

Details

Anti-Corrosion Methods and Materials, vol. 37 no. 10
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 October 2006

Yabo Guan, Farhang Pourboghrat and Woong‐Ryeol Yu

The purpose of this paper is to provide an axisymmetric model of tube hydroforming using a Fourier Series based finite element method.

1607

Abstract

Purpose

The purpose of this paper is to provide an axisymmetric model of tube hydroforming using a Fourier Series based finite element method.

Design/methodology/approach

Fourier series interpolation function, which considerably reduces the size of the global stiffness matrix and the number of variables, is employed to approximate displacements. The material of the tube is assumed to be elastic‐plastic and to satisfy the plasticity model that takes into account the rate independent work hardening and normal anisotropy. Numerical solution obtained from an updated Lagrangian formulation of the general shell theory is employed. The axial displacement stroke (a.k.a. axial feed) during tube hydroforming is incorporated using Lagrange multipliers. Contact constraints and boundary friction condition are introduced into the formulation based on the penalty function, which imposes the constraints directly into the tangent stiffness matrix. A forming limit curve based on shear instability and experimental measurements are used as fracture criteria.

Findings

The results obtained from this new formulation are compared against the nonlinear finite element code ABAQUS and experimental measurements for isotropic and transversely anisotropic tube materials. The hoop and axial strains predicted with AXHD code compared excellently with those from ABAQUS FEM code using plane stress axisymmetric (SAX1) and four‐node shell (S4R) elements. However, in the case of aluminum, the numerically predicted maximum hoop strain underestimated the actual hoop strain measured from the tube bulging experiment.

Practical implications

The axisymmetric hydroforming program (AXHD) developed in this work is very efficient in simulating the free‐forming stage of the tube hydroforming process under simultaneous action of internal pressurization and displacement stroke.

Originality/value

Although Fourier Series based finite element method has been used in metal forming, the extended application presented in this paper is novel in the finite element analysis of tube hydroforming.

Details

Engineering Computations, vol. 23 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 110