Search results

1 – 10 of 23
Open Access
Article
Publication date: 16 July 2024

Mohammed Y. Fattah, Qutaiba G. Majeed and Hassan H. Joni

The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle (vertical and…

Abstract

Purpose

The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle (vertical and lateral stresses). The objectives of this study can be identified by studying the effect of subgrade layer degree of saturation variation, load amplitude and load frequency on the transmitted stresses through the ballast layer to the subgrade layer and the stress distribution inside it and investigating the excess pore water pressure development in the clay layer in the case of a fully saturated subgrade layer and the change in matric suction in the case of an unsaturated subgrade layer.

Design/methodology/approach

Thirty-six laboratory experiments were conducted using approximately half-scale replicas of real railways, with an iron box measuring 1.5 x 1.0 × 1.0 m. Inside the box, a 0.5 m thick layer of clay soil representing the base layer was built. Above it is a 0.2 m thick ballast layer made of crushed stone, and on top of that is a 0.8 m long rail line supported by three 0.9 m (0.1 × 0.1 m) slipper beams. The subgrade layer has been built at the following various saturation levels: 100, 80, 70 and 60%. Experiments were conducted with various frequencies of 1, 2 and 4 Hz with load amplitudes of 15, 25 and 35 kN.

Findings

The results of the study demonstrated that as the subgrade degree of saturation decreased from 100 to 60%, the ratio of stress in the lateral direction to stress in the vertical direction generated in the middle of the subgrade layer decreased as well. On average, this ratio changed from approximately 0.75 to approximately 0.65.

Originality/value

The study discovered that as the test proceeded and the number of cycles increased, the value of negative water pressure (matric suction) in the case of unsaturated subgrade soils declined. The frequency of loads had no bearing on the ratio of decline in matric suction values, which was greater under a larger load amplitude than a lower one. As the test progressed (as the number of cycles increased), the matric suction dropped. For larger load amplitudes, there is a greater shift in matric suction. The change in matric suction is greater at higher saturation levels than it is at lower saturation levels. Furthermore, it is seen that the load frequency value has no bearing on how the matric suction changes. For all load frequencies and subgrade layer saturation levels, the track panel settlement rises with the load amplitude. Higher load frequency and saturation levels have a greater impact.

Details

Railway Sciences, vol. 3 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 11 June 2024

Mohammad Reza Karami, Mohsen Keramati, Reza Maadi and Hossein Moradi Moghaddam

This study aims to examine the reuse of plastic and fly ash (FA) to improve the soil and achieve sustainable development goals.

Abstract

Purpose

This study aims to examine the reuse of plastic and fly ash (FA) to improve the soil and achieve sustainable development goals.

Design/methodology/approach

Sand from the Anzali port was reinforced with Geopet (GP) and stabilized with FA plus 3% sodium hydroxide. The GP was placed in FA-stabilized soil and the California bearing ratio (CBR), and unconfined compressive strength (UCS) tests were performed on samples at the optimum moisture content.

Findings

The results showed that the improvement in the optimum CBR was 174.9%. The UCS increased 15.25% and 48.65% in soil reinforced with three layers of GP plus 15% FA over those containing 10% and 5% FA, respectively. Additionally, the current analysis used response surface methodology (RSM) to investigate the impact of FA percentage, GP layers and their interaction on CBR. The results highlight the efficacy of the used RSM model, as evidenced by the significantly low p-value (<0.0001).

Originality/value

This demonstrates the suitability and effectiveness of RSM for evaluating CBR in this scientific study.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 April 2024

Md. Ikramul Hoque, Muzamir Hasan and Shuvo Dip Datta

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which…

Abstract

Purpose

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which can improve the overall carrying capacity of soft clay as well as lessen the settlement of buildings built on it, is among the most widespread ground improvement techniques throughout the globe. The performance of foundation beds is enhanced by their stiffness values and higher strength, which could withstand more of the load applied. Stone dust is a wonderful source containing micronutrients for soil, particularly those derived from basalt, volcanic rock, granite and other related rocks. The aim of this paper is to evaluate the properties of soft clay reinforced with encapsulated stone dust columns to remediate problematic soil and obtain a more affordable and environmentally friendly way than using other materials.

Design/methodology/approach

In this study, the treated kaolin sample's shear strength was measured using the unconfined compression test (UCT). 28 batches of soil samples total, 12 batches of single stone dust columns measuring 10 mm in diameter and 12 batches of single stone dust columns measuring 16 mm in diameter. Four batches of control samples are also included. At heights of 60 mm, 80 mm and 100 mm, respectively, various stone dust column diameters were assessed. The real soil sample has a diameter of 50 mm and a height of 100 mm.

Findings

Test results show when kaolin is implanted with a single encased stone dust column that has an area replacement ratio of 10.24% and penetration ratios of 0.6, 0.8 and 1.0, the shear strength increase is 51.75%, 74.5% and 49.20%. The equivalent shear strength increases are 48.50%, 68.50% and 43.50% for soft soil treated with a 12.00% area replacement ratio and 0.6, 0.8 and 1.0 penetration ratios.

Originality/value

This study shows a comparison of how sample types affect shear strength. Also, this article provides argumentation behind the variation of soil strength obtained from different test types and gives recommendations for appropriate test methods for soft soil.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 7 May 2024

Mohammed Y. Fattah, Mahmood R. Mahmood and Mohammed F. Aswad

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry…

Abstract

Purpose

The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude, load frequency, presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system. These variables are studied both experimentally and numerically. This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer, where a half full scale railway tests are conducted as well as a theoretical analysis is performed.

Design/methodology/approach

The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load. Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways. The investigated parameters are load amplitude, load frequency and presence of geogrid reinforcement layer. A half full-scale railway was constructed for carrying out the tests, which consists of two rails 800 mm in length with three wooden sleepers (900 mm × 90 mm × 90 mm). The ballast was overlying 500 mm thick clay layer. The tests were carried out with and without geogrid reinforcement, the tests were carried out in a well tied steel box of 1.5 m length × 1 m width × 1 m height. A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, was measured in reinforced and unreinforced ballast cases. In addition to the laboratory tests, the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.

Findings

It was concluded that the settlement increased with increasing the simulated train load amplitude, there is a sharp increase in settlement up to the cycle 500 and after that, there is a gradual increase to level out between, 2,500 and 4,500 cycles depending on the load frequency. There is a little increase in the induced settlement when the load amplitude increased from 0.5 to 1 ton, but it is higher when the load amplitude increased to 2 ton, the increase in settlement depends on the geogrid existence and the other studied parameters. Both experimental and numerical results showed the same behavior. The effect of load frequency on the settlement ratio is almost constant after 500 cycles. In general, for reinforced cases, the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2% compared with the unreinforced case.

Originality/value

Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%. This ascertains the efficiency of ballast in spreading the waves induced by the track.

Details

Railway Sciences, vol. 3 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 January 2024

Yunfei Zou

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and…

Abstract

Purpose

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and load-bearing capacity. The research addresses the need for a more comprehensive analysis of non-uniform vertical strain responses and precise stress–strain models for FRP partially confined concrete.

Design/methodology/approach

DIC and strain gauges were employed to gather data during axial compression tests on FRP partially confined concrete specimens. Finite element analysis using ABAQUS was utilized to model partial confinement concrete with various constraint area ratios, ranging from 0 to 1. Experimental findings and simulation results were compared to refine and validate the stress–strain model.

Findings

The experimental results revealed that specimens exhibited strain responses characterized by either hardening or softening in both vertical and horizontal directions. The finite element analysis accurately reflected the relationship between surface constraint forces and axial strains in the x, y and z axes under different constraint area ratios. A proposed stress–strain model demonstrated high predictive accuracy for FRP partially confined concrete columns.

Practical implications

The stress–strain curves of partially confined concrete, based on Teng's foundation model for fully confined stress–strain behavior, exhibit a high level of predictive accuracy. These findings enhance the understanding of the mechanical behavior of partially confined concrete specimens, which is crucial for designing and assessing FRP confined concrete structures.

Originality/value

This research introduces innovative insights into the superior convenience and efficiency of partial wrapping strategies in the rehabilitation of beam-column joints, surpassing traditional full confinement methods. The study contributes methodological innovation by refining stress–strain models specifically for partially confined concrete, addressing the limitations of existing models. The combination of experimental and simulated assessments using DIC and FEM technologies provides robust empirical evidence, advancing the understanding and optimization of FRP-concrete structure performance. This work holds significance for the broader field of concrete structure reinforcement.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 July 2024

Rama Krishna Shinagam, Deepak Raj Kumar Vengalasetti and Tarun Maruvada

This study aims to identify the location of cracks in composite plates using a normalized mode shape curve algorithm. Crack in any structure is a destructive occurrence. Detecting…

Abstract

Purpose

This study aims to identify the location of cracks in composite plates using a normalized mode shape curve algorithm. Crack in any structure is a destructive occurrence. Detecting these cracks early is pivotal for ensuring safety and preventing potential accidents. To prevent failure of structures, it is crucial to detect these cracks effectively and take the necessary precautions. Hence, crack detection and localization techniques are used to avoid sudden failures of structures while in operation.

Design/methodology/approach

An experimental modal analysis is conducted on composite plates with and without cracks to determine the natural frequencies and mode shapes. For this purpose, an impact hammer, uniaxial accelerometer and four-channel vibration analyzer are used to find the natural frequencies and mode shapes. Numerical modal analysis is performed on no crack and cracked composite plates using ANSYS software, and these are validated by the experimental modal analysis results. The normalized mode shapes algorithm is trained using test data of the first three natural frequencies collected from numerical modal analysis on different cracked composite plates for localization of crack.

Findings

The natural frequencies derived from both experimental modal analysis and numerical modal analysis exhibit a variance of 9.6%. The estimation of the crack location is achieved with exceptional precision by intersecting the first three normalized mode shapes. The first three normalized mode shape curve intersections provide a solid indication of the crack’s location. As the difference in error between the actual and estimated crack locations is only 0.9%.

Originality/value

This study introduces the first application of experimental modal analysis in conjunction with the normalized mode shape curve algorithm for localizing cracks in composite plates. The normalization process of mode shapes, derived from experimental modal analysis, forms a fundamental component of the mode shape curve algorithm specifically designed for crack localization. Combining experimental modal analysis with a specific algorithm of normalizing mode shapes is used to identify and locate cracks within these composite plates.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

97

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 23