Search results

1 – 10 of over 2000
Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 February 2023

Zeqi Liu, Zefeng Tong and Zhonghua Zhang

This study examines the differences in the economic stimulus effects, transmission mechanisms, and output multipliers of government consumption, government traditional investment…

Abstract

Purpose

This study examines the differences in the economic stimulus effects, transmission mechanisms, and output multipliers of government consumption, government traditional investment, and government science and technology investment.

Design/methodology/approach

This study constructs and estimates a New Keynesian model of endogenous technological progress embedded in the research and development (R&D) and technology transfer sectors. Using Chinese macroeconomic time series data from 1996 to 2019, this study calibrates and estimates the model and analyzes the impulse response function and a counterfactual simulation of expenditure structure adjustment.

Findings

The results show that compared with the traditional dynamic stochastic general equilibrium (DSGE) model, the endogenous process of technological progress amplifies the impact of government consumption shock and traditional government investment shock on the macroeconomy, leading to greater economic cycle fluctuations. As government investment in science and technology has positive external spillover effects on firm R&D activities and the application of innovation achievements, it can promote more sustainable economic growth than government consumption and traditional investment in the long run.

Originality/value

This study constructs an extended New Keynesian model with different types of government spending, which includes endogenous technological progress within the R&D and technology transfer sectors, thereby linking fiscal policy, business cycle fluctuations and long-term economic growth. This model can study the macroeconomic impact of fiscal expenditure structure adjustment when fiscal expansion is limited. In the Bayesian estimation of model parameters, this study not only uses macroeconomic variables but also adds a sequence of private R&D investment.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Open Access
Article
Publication date: 21 March 2024

Giovanni De Luca and Monica Rosciano

The tourist industry has to adopt a big data-driven foresight approach to enhance decision-making in a post-COVID international landscape still marked by significant uncertainty…

Abstract

Purpose

The tourist industry has to adopt a big data-driven foresight approach to enhance decision-making in a post-COVID international landscape still marked by significant uncertainty and in which some megatrends have the potential to reshape society in the next decades. This paper, considering the opportunity offered by the application of the quantitative analysis on internet new data sources, proposes a prediction method using Google Trends data based on an estimated transfer function model.

Design/methodology/approach

The paper uses the time-series methods to model and predict Google Trends data. A transfer function model is used to transform the prediction of Google Trends data into predictions of tourist arrivals. It predicts the United States tourism demand in Italy.

Findings

The results highlight the potential expressed by the use of big data-driven foresight approach. Applying a transfer function model on internet search data, timely forecasts of tourism flows are obtained. The two scenarios emerged can be used in tourism stakeholders’ decision-making process. In a future perspective, the methodological path could be applied to other tourism origin markets, to other internet search engine or other socioeconomic and environmental contexts.

Originality/value

The study raises awareness of foresight literacy in the tourism sector. Secondly, it complements the research on tourism demand forecasting by evaluating the performance of quantitative forecasting techniques on new data sources. Thirdly, it is the first paper that makes the United States arrival predictions in Italy. Finally, the findings provide immediate valuable information to tourism stakeholders that could be used to make decisions.

Details

Journal of Tourism Futures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2055-5911

Keywords

Article
Publication date: 23 October 2023

Jingtao Liu, Lianju Ning and Qifang Gao

In the digital economy era, digital platforms are vital infrastructure for innovation subjects to perform digital innovation activities. Achieving efficient and smooth knowledge…

Abstract

Purpose

In the digital economy era, digital platforms are vital infrastructure for innovation subjects to perform digital innovation activities. Achieving efficient and smooth knowledge transfer between innovation subjects through digital platforms has become a novel research subject. This study aims to examine the knowledge transfer mechanism of digital platforms in the digital innovation ecosystem through modeling and simulation to offer a theoretical basis for digital innovation subjects to acquire digital value through knowledge-sharing and thus augment their competitive advantage.

Design/methodology/approach

This study explores the optimal symbiotic interaction rate between different users based on the classic susceptible-infected-removed (SIR) model. Additionally, it constructs a knowledge transfer mechanism model for digital platforms in the digital innovation ecosystem by combining the theories of communication dynamics and symbiosis. Finally, Matrix Laboratory (MATLAB) software is used for the model and numerical simulation.

Findings

The results demonstrate that (1) the evolutionary path of the symbiotic model is key to digital platforms' knowledge transfer in the digital innovation ecosystem. In the symbiotic model, the knowledge transfer path of digital platforms is “independent symbiosis—biased symbiosis (user benefit)—reciprocal symbiosis,” aligning with the overall interests of the digital innovation ecosystem. (2) Digital platforms' knowledge transfer effects within the digital innovation ecosystem show significant differences. The most effective knowledge transfer model for digital platforms is reciprocal symbiosis, whereas the least effective is parochial symbiosis (platform benefit). (3) The symbiotic rate has a significant positive impact on the evolutionary dynamics of knowledge transfer on digital platforms, especially in the reciprocal symbiosis model.

Originality/value

This study's results aid digital innovators in achieving efficient knowledge transfer through digital platforms and identify how symbiotic relationships affect the knowledge transfer process across the ecosystem. Accordingly, the authors propose targeted recommendations to promote the efficiency of knowledge transfer on digital platforms.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 7 February 2024

Jennifer M. Blaney, David F. Feldon and Kaylee Litson

Supporting community college transfer students represents a critical strategy for broadening participation in STEM. In addition to being a racially diverse group, students who…

Abstract

Purpose

Supporting community college transfer students represents a critical strategy for broadening participation in STEM. In addition to being a racially diverse group, students who pursue STEM degrees by way of community college report frequent interests in graduate study and academic careers. Thus, supporting and expanding transfer students’ PhD interests can help to diversify the STEM professoriate. This study aims to identify the experiences that predict PhD interests among students who transferred into the computer science major from a community college.

Design/methodology/approach

Relying on longitudinal survey data from over 150 community college transfer students throughout their first year at their receiving four-year university, we used regression analysis to identify the post-transfer college experiences that predict early interest in PhDs.

Findings

We found that receiving information about PhDs from a professor strongly predicted PhD interest among transfer students. Relationships with other variables indicate that the provision of information about graduate school was more likely to occur for students who participated in undergraduate research experiences than for those participating in internships. Descriptive data document inequities in who has access to these types of experiences.

Originality/value

This paper provides new insight into how STEM departments can develop targeted efforts to ensure that information about PhD training is equitably available to all transfer students. Working to ensure that faculty equitably communicate with students about PhD opportunities may go a long way in countering potential deterrents among transfer students who may be interested in such pathways.

Details

Studies in Graduate and Postdoctoral Education, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4686

Keywords

Article
Publication date: 6 February 2024

Alireza Goudarzian and Rohallah Pourbagher

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of…

21

Abstract

Purpose

Conventional isolated dc–dc converters offer an efficient solution for performing voltage conversion with a large improved voltage gain. However, the small-signal analysis of these converters shows that a right-half-plane (RHP) zero appears in their control-to-output transfer function, exhibiting a nonminimum-phase stability. This RHP zero can limit the frequency response and dynamic specifications of the converters; therefore, the output voltage response is sluggish. To overcome these problems, the purpose of this study is to analyze, model and design a new isolated forward single-ended primary-inductor converter (IFSEPIC) through RHP zero alleviation.

Design/methodology/approach

At first, the normal operation of the suggested IFSEPIC is studied. Then, its average model and control-to-output transfer function are derived. Based on the obtained model and Routh–Hurwitz criterion, the components are suitably designed for the proposed IFSEPIC, such that the derived dynamic model can eliminate the RHP zero.

Findings

The advantages of the proposed IFSEPIC can be summarized as: This converter can provide conditions to achieve fast dynamic behavior and minimum-phase stability, owing to the RHP zero cancellation; with respect to conventional isolated converters, a larger gain can be realized using the proposed topology; thus, it is possible to attain a smaller operating duty cycle; for conventional isolated converters, transformer core saturation is a major concern, owing to a large magnetizing current. However, the average value of the magnetizing current becomes zero for the proposed IFSEPIC, thereby avoiding core saturation, particularly at high frequencies; and the input current of the proposed converter is continuous, reducing input current ripple.

Originality/value

The key benefits of the proposed IFSEPIC are shown via comparisons. To validate the design method and theoretical findings, a practical implementation is presented.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 July 2023

Vinayambika S. Bhat, Thirunavukkarasu Indiran, Shanmuga Priya Selvanathan and Shreeranga Bhat

The purpose of this paper is to propose and validate a robust industrial control system. The aim is to design a Multivariable Proportional Integral controller that accommodates…

98

Abstract

Purpose

The purpose of this paper is to propose and validate a robust industrial control system. The aim is to design a Multivariable Proportional Integral controller that accommodates multiple responses while considering the process's control and noise parameters. In addition, this paper intended to develop a multidisciplinary approach by combining computational science, control engineering and statistical methodologies to ensure a resilient process with the best use of available resources.

Design/methodology/approach

Taguchi's robust design methodology and multi-response optimisation approaches are adopted to meet the research aims. Two-Input-Two-Output transfer function model of the distillation column system is investigated. In designing the control system, the Steady State Gain Matrix and process factors such as time constant (t) and time delay (?) are also used. The unique methodology is implemented and validated using the pilot plant's distillation column. To determine the robustness of the proposed control system, a simulation study, statistical analysis and real-time experimentation are conducted. In addition, the outcomes are compared to different control algorithms.

Findings

Research indicates that integral control parameters (Ki) affect outputs substantially more than proportional control parameters (Kp). The results of this paper show that control and noise parameters must be considered to make the control system robust. In addition, Taguchi's approach, in conjunction with multi-response optimisation, ensures robust controller design with optimal use of resources. Eventually, this research shows that the best outcomes for all the performance indices are achieved when Kp11 = 1.6859, Kp12 = −2.061, Kp21 = 3.1846, Kp22 = −1.2176, Ki11 = 1.0628, Ki12 = −1.2989, Ki21 = 2.454 and Ki22 = −0.7676.

Originality/value

This paper provides a step-by-step strategy for designing and validating a multi-response control system that accommodates controllable and uncontrollable parameters (noise parameters). The methodology can be used in any industrial Multi-Input-Multi-Output system to ensure process robustness. In addition, this paper proposes a multidisciplinary approach to industrial controller design that academics and industry can refine and improve.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 April 2024

Slobodan Čavić, Nikola Ćurčić, Nikola Radivojevic, Jovana Gardašević Živanov and Marija Lakićević

The paper examines the role and significance of gastronomic manifestations in the context of destination branding, within the framework of image transfer mechanisms and the…

Abstract

Purpose

The paper examines the role and significance of gastronomic manifestations in the context of destination branding, within the framework of image transfer mechanisms and the Associative Network Memory Model.

Design/methodology/approach

The research was conducted on a sample of 53 gastronomic events in the tourist destination of Vojvodina.

Findings

The results indicate that gastronomic manifestations image has a positive impact on the brand image and brand identity of the destination, as well as the destination's overall image. Furthermore, the study found that the food experience has a positive influence on the image of gastronomic events and the destination.

Originality/value

The study contributes to the advancement of research on tourist destination branding.

Details

Marketing Intelligence & Planning, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-4503

Keywords

Article
Publication date: 9 March 2023

Mina Heydari Torkamani, Yaser Shahbazi and Azita Belali Oskoyi

Historical bazaars, a huge treasure of Iranian culture, art and economy, are places for social capital development. Un-supervised management in past decades has led to the…

Abstract

Purpose

Historical bazaars, a huge treasure of Iranian culture, art and economy, are places for social capital development. Un-supervised management in past decades has led to the demolition and change of historical bazaars and negligence of its different aspects. The present research aims to investigate the resilience of historical bazaars preserving their identity and different developments.

Design/methodology/approach

The artificial neural network (ANN) has been applied to investigate the resilience of historical bazaars. This model consists of three main networks for evaluating the resilience of historical networks in terms of adaptability, variability and reactivity.

Findings

The ANN proposed to evaluate the resilience of historic bazaars based on the mentioned factors is efficient. By calculating mean squared error (MSE), the model accuracy for evaluating adaptability, variability and reactivity were obtained at 7.62e-25, 2.91e-24 and 1.51e-24. The correlation coefficient was obtained at a significance level of 99%. This indicates the considerable effectiveness of the artificial intelligence model in modeling and predicting the qualitative properties of historical bazaars resilience.

Originality/value

This paper clarifies indexes and components of resilience in terms of adaptability, variability and reactivity. Then, the ANN model is obtained with the least error and very high accuracy that predict the resilience of historical bazaars.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 29 November 2022

Menggen Chen and Yuanren Zhou

The purpose of this paper is to explore the dynamic interdependence structure and risk spillover effect between the Chinese stock market and the US stock market.

Abstract

Purpose

The purpose of this paper is to explore the dynamic interdependence structure and risk spillover effect between the Chinese stock market and the US stock market.

Design/methodology/approach

This paper mainly uses the multivariate R-vine copula-complex network analysis and the multivariate R-vine copula-CoVaR model and selects stock price indices and their subsector indices as samples.

Findings

The empirical results indicate that the Energy, Materials and Financials sectors have leading roles in the interdependent structure of the Chinese and US stock markets, while the Utilities and Real Estate sectors have the least important positions. The comprehensive influence of the Chinese stock market is similar to that of the US stock market but with smaller differences in the influence of different sectors of the US stock market on the overall interdependent structure system. Over time, the interdependent structure of both stock markets changed; the sector status gradually equalized; the contribution of the same sector in different countries to the interdependent structure converged; and the degree of interaction between the two stock markets was positively correlated with the degree of market volatility.

Originality/value

This paper employs the methods of nonlinear cointegration and the R-vine copula function to explore the interactive relationship and risk spillover effect between the Chinese stock market and the US stock market. This paper proposes the R-vine copula-complex network analysis method to creatively construct the interdependent network structure of the two stock markets. This paper combines the generalized CoVaR method with the R-vine copula function, introduces the stock market decline and rise risk and further discusses the risk spillover effect between the two stock markets.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

1 – 10 of over 2000