Search results

1 – 10 of over 4000
Article
Publication date: 29 April 2021

Huan Wang, Yuhong Wang and Dongdong Wu

To predict the passenger volume reasonably and accurately, this paper fills the gap in the research of quarterly data forecast of railway passenger volume. The research results…

Abstract

Purpose

To predict the passenger volume reasonably and accurately, this paper fills the gap in the research of quarterly data forecast of railway passenger volume. The research results can also provide references for railway departments to plan railway operation lines reasonably and efficiently.

Design/methodology/approach

This paper intends to establish a seasonal cycle first order univariate grey model (GM(1,1) model) combing with a seasonal index. GM (1,1) is termed as the trend equation to fit the railway passenger volume in China from 2014 to 2018. The railway passenger volume in 2019 is used as the experimental data to verify the forecasting effect of the proposed model. The forecasting results of the seasonal cycle GM (1,1) model are compared with the traditional GM (1,1) model, seasonal grey model (SGM(1,1)), Seasonal Autoregressive Integrated Moving Average (SARIMA) model, moving average method and exponential smoothing method. Finally, the authors forecast the railway passenger volume from 2020 to 2022.

Findings

The quarterly data of national railway passenger volume have a clear tendency of cyclical fluctuations and show an annual growth trend. According to the comparison of the modeling results, the authors know that the seasonal cycle GM (1,1) model has the best prediction effect with the mean absolute percentage error of 1.32%. It is much better than the other models, reflecting the feasibility of the proposed model.

Originality/value

As the previous grey prediction model could not solve the series prediction problem with seasonal fluctuation, and there are few research studies on quarterly railway passenger volume forecasting, GM (1,1) model is taken as the trend equation and combined with the seasonal index to construct a combination forecasting model for accurate forecasting results in this study. Besides, considering the impact of the epidemic on passenger volume, the authors introduce a disturbance factor to deal with the forecasting results in 2020, making the modeling results more scientific, practical and referential.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 3 May 2023

Bin Wang, Fanghong Gao, Le Tong, Qian Zhang and Sulei Zhu

Traffic flow prediction has always been a top priority of intelligent transportation systems. There are many mature methods for short-term traffic flow prediction. However, the…

Abstract

Purpose

Traffic flow prediction has always been a top priority of intelligent transportation systems. There are many mature methods for short-term traffic flow prediction. However, the existing methods are often insufficient in capturing long-term spatial-temporal dependencies. To predict long-term dependencies more accurately, in this paper, a new and more effective traffic flow prediction model is proposed.

Design/methodology/approach

This paper proposes a new and more effective traffic flow prediction model, named channel attention-based spatial-temporal graph neural networks. A graph convolutional network is used to extract local spatial-temporal correlations, a channel attention mechanism is used to enhance the influence of nearby spatial-temporal dependencies on decision-making and a transformer mechanism is used to capture long-term dependencies.

Findings

The proposed model is applied to two common highway datasets: METR-LA collected in Los Angeles and PEMS-BAY collected in the California Bay Area. This model outperforms the other five in terms of performance on three performance metrics a popular model.

Originality/value

(1) Based on the spatial-temporal synchronization graph convolution module, a spatial-temporal channel attention module is designed to increase the influence of proximity dependence on decision-making by enhancing or suppressing different channels. (2) To better capture long-term dependencies, the transformer module is introduced.

Details

Data Technologies and Applications, vol. 58 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 8 June 2012

Xinping Xiao and Yayun Lu

The purpose of this paper is to simplify the computation of parameter estimation in the grey linear regression model and solve the problem that the development coefficient could…

1953

Abstract

Purpose

The purpose of this paper is to simplify the computation of parameter estimation in the grey linear regression model and solve the problem that the development coefficient could not be computed in some sequence data, such as short‐term traffic flow.

Design/methodology/approach

Starting from the limitation that can be identified in the equation and analyzing the range using the method to estimate parameters, this paper researches the modelling mechanism and the other forms which are equivalent with the original form. At the same time, this paper gives an estimation method and gets the relationship in various forms and the relationship between the model and GM(1,1) model.

Findings

For the grey linear regression model, there exists a new method of parameter identification and three other forms as follows: the original form, the Whitenization equation and the connotation form.

Practical implications

The method of parameter identification exposed in the paper expanded the scope of the application of the grey linear regression model, and it can be used to model and forecast the urban road short‐time traffic flow.

Originality/value

This paper has solved some complicated problems such as the parameter estimation computation in the grey linear regression model. In addition, three kinds of representation forms of the model and its relationship between the model and GM(1,1) have also been presented. Finally, its application of the model in a short‐term traffic flow prediction has shown its superiority.

Article
Publication date: 27 October 2023

Pulkit Tiwari

The objective of this research work is to design a data-based solution for administering traffic organization in a smart city by using the machine learning algorithm.

Abstract

Purpose

The objective of this research work is to design a data-based solution for administering traffic organization in a smart city by using the machine learning algorithm.

Design/methodology/approach

A machine learning framework for managing traffic infrastructure and air pollution in urban centers relies on a predictive analytics model. The model makes use of transportation data to predict traffic patterns based on the information gathered from numerous sources within the city. It can be promoted for strategic planning determination. The data features volume and calendar variables, including hours of the day, week and month. These variables are leveraged to identify time series-based seasonal patterns in the data. To achieve accurate traffic volume forecasting, the long short-term memory (LSTM) method is recommended.

Findings

The study has produced a model that is appropriate for the transportation sector in the city and other innovative urban applications. The findings indicate that the implementation of smart transportation systems enhances transportation and has a positive impact on air quality. The study's results are explored and connected to practical applications in the areas of air pollution control and smart transportation.

Originality/value

The present paper has created the machine learning framework for the transportation sector of smart cities that achieves a reasonable level of accuracy. Additionally, the paper examines the effects of smart transportation on both the environment and supply chain.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Open Access
Article
Publication date: 25 August 2021

Weiwei Zhu, Jinglin Wu, Ting Fu, Junhua Wang, Jie Zhang and Qiangqiang Shangguan

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great…

1507

Abstract

Purpose

Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler’s perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps.

Design/methodology/approach

This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing.

Findings

Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction.

Research limitations/implications

The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations.

Practical implications

The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications.

Originality/value

This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 24 October 2022

Priyanka Chawla, Rutuja Hasurkar, Chaithanya Reddy Bogadi, Naga Sindhu Korlapati, Rajasree Rajendran, Sindu Ravichandran, Sai Chaitanya Tolem and Jerry Zeyu Gao

The study aims to propose an intelligent real-time traffic model to address the traffic congestion problem. The proposed model assists the urban population in their everyday lives…

Abstract

Purpose

The study aims to propose an intelligent real-time traffic model to address the traffic congestion problem. The proposed model assists the urban population in their everyday lives by assessing the probability of road accidents and accurate traffic information prediction. It also helps in reducing overall carbon dioxide emissions in the environment and assists the urban population in their everyday lives by increasing overall transportation quality.

Design/methodology/approach

This study offered a real-time traffic model based on the analysis of numerous sensor data. Real-time traffic prediction systems can identify and visualize current traffic conditions on a particular lane. The proposed model incorporated data from road sensors as well as a variety of other sources. It is difficult to capture and process large amounts of sensor data in real time. Sensor data is consumed by streaming analytics platforms that use big data technologies, which is then processed using a range of deep learning and machine learning techniques.

Findings

The study provided in this paper would fill a gap in the data analytics sector by delivering a more accurate and trustworthy model that uses internet of things sensor data and other data sources. This method can also assist organizations such as transit agencies and public safety departments in making strategic decisions by incorporating it into their platforms.

Research limitations/implications

The model has a big flaw in that it makes predictions for the period following January 2020 that are not particularly accurate. This, however, is not a flaw in the model; rather, it is a flaw in Covid-19, the global epidemic. The global pandemic has impacted the traffic scenario, resulting in erratic data for the period after February 2020. However, once the circumstance returns to normal, the authors are confident in their model’s ability to produce accurate forecasts.

Practical implications

To help users choose when to go, this study intended to pinpoint the causes of traffic congestion on the highways in the Bay Area as well as forecast real-time traffic speeds. To determine the best attributes that influence traffic speed in this study, the authors obtained data from the Caltrans performance measurement system (PeMS), reviewed it and used multiple models. The authors developed a model that can forecast traffic speed while accounting for outside variables like weather and incident data, with decent accuracy and generalizability. To assist users in determining traffic congestion at a certain location on a specific day, the forecast method uses a graphical user interface. This user interface has been designed to be readily expanded in the future as the project’s scope and usefulness increase. The authors’ Web-based traffic speed prediction platform is useful for both municipal planners and individual travellers. The authors were able to get excellent results by using five years of data (2015–2019) to train the models and forecast outcomes for 2020 data. The authors’ algorithm produced highly accurate predictions when tested using data from January 2020. The benefits of this model include accurate traffic speed forecasts for California’s four main freeways (Freeway 101, I-680, 880 and 280) for a specific place on a certain date. The scalable model performs better than the vast majority of earlier models created by other scholars in the field. The government would benefit from better planning and execution of new transportation projects if this programme were to be extended across the entire state of California. This initiative could be expanded to include the full state of California, assisting the government in better planning and implementing new transportation projects.

Social implications

To estimate traffic congestion, the proposed model takes into account a variety of data sources, including weather and incident data. According to traffic congestion statistics, “bottlenecks” account for 40% of traffic congestion, “traffic incidents” account for 25% and “work zones” account for 10% (Traffic Congestion Statistics). As a result, incident data must be considered for analysis. The study uses traffic, weather and event data from the previous five years to estimate traffic congestion in any given area. As a result, the results predicted by the proposed model would be more accurate, and commuters who need to schedule ahead of time for work would benefit greatly.

Originality/value

The proposed work allows the user to choose the optimum time and mode of transportation for them. The underlying idea behind this model is that if a car spends more time on the road, it will cause traffic congestion. The proposed system encourages users to arrive at their location in a short period of time. Congestion is an indicator that public transportation needs to be expanded. The optimum route is compared to other kinds of public transit using this methodology (Greenfield, 2014). If the commute time is comparable to that of private car transportation during peak hours, consumers should take public transportation.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 May 2021

Song Wang and Yang Yang

The rapid development of e-commerce has brought not only great convenience to people but a great challenge to online stores. Phenomenon such as out of stock and slow sales has…

Abstract

Purpose

The rapid development of e-commerce has brought not only great convenience to people but a great challenge to online stores. Phenomenon such as out of stock and slow sales has been common in recent years. These issues can be managed only when the occurrence of the sales volume is predicted in advance, and sufficient warnings can be executed in time. Thus, keeping in mind the importance of the sales prediction system, the purpose of this paper is to propose an effective sales prediction model and make digital marketing strategies with the machine learning model.

Design/methodology/approach

Based on the consumer purchasing behavior decision theory, we discuss the factors affecting product sales, including external factors, consumer perception, consumer potential purchase behavior and consumer traffic. Then we propose a sales prediction model, M-GNA-XGBOOST, using the time-series prediction that ensures the effective prediction of sales about each product in a short time on online stores based on the sales data in the previous term or month or year. The proposed M-GNA-XGBOOST model serves as an adaptive prediction model, for which the instant factors and the sales data of the previous period are the input, and the optimal computation is based on the proposed methodology. The adaptive prediction using the proposed model is developed based on the LSTM (Long Short-Term Memory), GAN (Generative Adversarial Networks) and XGBOOST (eXtreme Gradient Boosting). The model inherits the advantages among the algorithms with better accuracy and forecasts the sales of each product in the store with instant data characteristics for the first time.

Findings

The analysis using Jingdong dataset proves the effectiveness of the proposed prediction method. The effectiveness of the proposed method is enhanced and the accuracy that instant data as input is found to be better compared with the model that lagged data as input. The root means squared error and mean absolute error of the proposed model are found to be around 11.9 and 8.23. According to the sales prediction of each product, the resource can be arranged in advance, and the marketing strategy of product positioning, product display optimization, inventory management and product promotion is designed for online stores.

Originality/value

The paper proposes and implements a new model, M-GNA-XGBOOST, to predict sales of each product for online stores. Our work provides reference and enlightenment for the establishment of accurate sales-based digital marketing strategies for online stores.

Details

Data Technologies and Applications, vol. 55 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 22 June 2022

Suvarna Abhijit Patil and Prasad Kishor Gokhale

With the advent of AI-federated technologies, it is feasible to perform complex tasks in industrial Internet of Things (IIoT) environment by enhancing throughput of the network…

Abstract

Purpose

With the advent of AI-federated technologies, it is feasible to perform complex tasks in industrial Internet of Things (IIoT) environment by enhancing throughput of the network and by reducing the latency of transmitted data. The communications in IIoT and Industry 4.0 requires handshaking of multiple technologies for supporting heterogeneous networks and diverse protocols. IIoT applications may gather and analyse sensor data, allowing operators to monitor and manage production systems, resulting in considerable performance gains in automated processes. All IIoT applications are responsible for generating a vast set of data based on diverse characteristics. To obtain an optimum throughput in an IIoT environment requires efficiently processing of IIoT applications over communication channels. Because computing resources in the IIoT are limited, equitable resource allocation with the least amount of delay is the need of the IIoT applications. Although some existing scheduling strategies address delay concerns, faster transmission of data and optimal throughput should also be addressed along with the handling of transmission delay. Hence, this study aims to focus on a fair mechanism to handle throughput, transmission delay and faster transmission of data. The proposed work provides a link-scheduling algorithm termed as delay-aware resource allocation that allocates computing resources to computational-sensitive tasks by reducing overall latency and by increasing the overall throughput of the network. First of all, a multi-hop delay model is developed with multistep delay prediction using AI-federated neural network long–short-term memory (LSTM), which serves as a foundation for future design. Then, link-scheduling algorithm is designed for data routing in an efficient manner. The extensive experimental results reveal that the average end-to-end delay by considering processing, propagation, queueing and transmission delays is minimized with the proposed strategy. Experiments show that advances in machine learning have led to developing a smart, collaborative link scheduling algorithm for fairness-driven resource allocation with minimal delay and optimal throughput. The prediction performance of AI-federated LSTM is compared with the existing approaches and it outperforms over other techniques by achieving 98.2% accuracy.

Design/methodology/approach

With an increase of IoT devices, the demand for more IoT gateways has increased, which increases the cost of network infrastructure. As a result, the proposed system uses low-cost intermediate gateways in this study. Each gateway may use a different communication technology for data transmission within an IoT network. As a result, gateways are heterogeneous, with hardware support limited to the technologies associated with the wireless sensor networks. Data communication fairness at each gateway is achieved in an IoT network by considering dynamic IoT traffic and link-scheduling problems to achieve effective resource allocation in an IoT network. The two-phased solution is provided to solve these problems for improved data communication in heterogeneous networks achieving fairness. In the first phase, traffic is predicted using the LSTM network model to predict the dynamic traffic. In the second phase, efficient link selection per technology and link scheduling are achieved based on predicted load, the distance between gateways, link capacity and time required as per different technologies supported such as Bluetooth, Wi-Fi and Zigbee. It enhances data transmission fairness for all gateways, resulting in more data transmission achieving maximum throughput. Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation.

Findings

Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation. It also shows that AI- and IoT-federated devices can communicate seamlessly over IoT networks in Industry 4.0.

Originality/value

The concept is a part of the original research work and can be adopted by Industry 4.0 for easy and seamless connectivity of AI and IoT-federated devices.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 November 2022

Qian Tang, Yuzhuo Qiu and Lan Xu

The demand for the cold chain logistics of agricultural products was investigated through demand forecasting; targeted suggestions and countermeasures are provided. This paper…

Abstract

Purpose

The demand for the cold chain logistics of agricultural products was investigated through demand forecasting; targeted suggestions and countermeasures are provided. This paper aims to discuss the aforementioned statement.

Design/methodology/approach

A Markov-optimised mean GM (1, 1) model is proposed to forecast the demand for the cold chain logistics of agricultural products. The mean GM (1, 1) model was used to forecast the demand trend, and the Markov chain model was used for optimisation. Considering Guangxi province as an example, the feasibility and effectiveness of the proposed method were verified, and relevant suggestions are made.

Findings

Compared with other models, the Markov-optimised mean GM (1, 1) model can more effectively forecast the demand for the cold chain logistics of agricultural products, is closer to the actual value and has better accuracy and minor error. It shows that the demand forecast can provide specific suggestions and theoretical support for the development of cold chain logistics.

Originality/value

This study evaluated the development trend of the cold chain logistics of agricultural products based on the research horizon of demand forecasting for cold chain logistics. A Markov-optimised mean GM (1, 1) model is proposed to overcome the problem of poor prediction for series with considerable fluctuation in the modelling process, and improve the prediction accuracy. It finds a breakthrough to promote the development of cold chain logistics through empirical analysis, and give relevant suggestions based on the obtained results.

Details

Kybernetes, vol. 53 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 11 September 2019

Marcel Huettermann, Tatjana Thimm, Frank Hannich and Christine Bild

The purpose of this paper is to examine visitor management in the German-Swiss border area of the Lake Constance region. Taking a customer perspective, it determines the…

2472

Abstract

Purpose

The purpose of this paper is to examine visitor management in the German-Swiss border area of the Lake Constance region. Taking a customer perspective, it determines the requirements for an application with the ability to optimize personal mobility.

Design/methodology/approach

A quantitative study and a survey of focus groups were conducted to identify movement patterns of different types of visitors and their requirements concerning the development of a visitor management application.

Findings

Visitors want an application that provides real-time forecasts of issues such as traffic, parking and queues and, at the same time, enables them to create a personal activity schedule based on this information.

Research limitations/implications

Not every subsample reached a sufficient number of cases to yield representative results.

Practical implications

The results may lead to an optimization and management separation of mobility flows in the research area and be helpful to municipal planners, destination marketing organizations and visitors.

Originality/value

The German border cities of Konstanz, Radolfzell and Singen in the Lake Constance region need improved visitor management, mainly because of a high level of shopping tourism by Swiss visitors to Germany. In the Summer months, Lake Constance is also a popular destination for leisure tourists, which causes overtourism. For the first time, the results of this research presented here offer possible solutions, in particular by showing how a mobile application for visitors could defuse the situation.

Details

Journal of Tourism Futures, vol. 5 no. 3
Type: Research Article
ISSN: 2055-5911

Keywords

1 – 10 of over 4000