Search results

1 – 10 of 163
Article
Publication date: 4 May 2020

Lidija Petkovska, Paul Lefley and Goga Vladimir Cvetkovski

This paper presents the design techniques applied to a novel fractional-slot 6/4 pole permanent magnet brushless direct current (PMBLDC) motor, for cogging torque reduction. The…

Abstract

Purpose

This paper presents the design techniques applied to a novel fractional-slot 6/4 pole permanent magnet brushless direct current (PMBLDC) motor, for cogging torque reduction. The notable feature of this motor is the simplicity of the design and low production cost. The purpose of this paper is to reduce the peak cogging torque of the motor. The focus is put on the stator topology tuning, and a new design for the stator poles is proposed. By determining the optimum stator pole arc length and the best pole shoe thickness, the cogging torque is significantly reduced. This new optimised motor design has been analysed in detail. The validation of the results is documented with respective figures and charts.

Design/methodology/approach

At the beginning, the design data for the 6/4 pole PMBLDC motor with concentrated three phase windings and asymmetric stator pole arcs is presented. In the study, this motor is taken as a reference model (A0, T0). A full performance finite element analysis of the reference motor has been carried out, and the weak points in the motor design have been identified. By simple design techniques, tuning the stator pole geometry, a two-stage design optimisation for cogging torque minimisation has been performed and the solution array has been derived. The optimised model is selected and proposed (Aopt, Topt). The comparative analysis of the reference and optimised motors show the advantages of the proposed novel design and prove the methodology.

Findings

The results of the work demonstrate how simple design techniques can minimise the peak of the cogging torque profile, while maintaining the specified electromagnetic torque value. The sensitivity of the cogging torque profile because of changes of the stator pole design inside the prescribed constraints is apparent. The stator poles of the reference motor have an arc length of 85° and pole shoe thickness of 6 mm. The newly shaped stator poles have an arc length of 78.5° and pole shoe thickness 4.8 mm. The peak-cogging torque has been reduced from 0.158 Nm to a respectable value of 0.066 Nm. However, to reduce electromagnetic torque ripple and pulsations, further investigations are required.

Originality/value

The paper presents an approach to cogging torque reduction for a 6/4 PMBLDC motor. A two-step original design procedure is introduced and an optimised stator pole geometry is defined. The minimised cogging torque has been demonstrated with improved usage of the active materials. This work could serve as a good basis for further optimisation of the motor design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 August 2018

Marcin Wardach

The paper aims to present the hybrid excited claw pole generator design, simulation and experimental results. The prototype has claw poles on two rotor sections, between which an…

Abstract

Purpose

The paper aims to present the hybrid excited claw pole generator design, simulation and experimental results. The prototype has claw poles on two rotor sections, between which an excitation coil is located. The innovation of this machine is permanent magnets location on claws of one part of the rotor. The paper presents construction of the machine and analysis of the current in the excitation control coil influence on the electromagnetic torque, cogging torque and back-emf values. Presented studies enabled the determination of the torque and the back-emf for both: the strengthening and the weakening of magnetic field.

Design/methodology/approach

In the study, finite element analysis was used to perform simulation research. Then, based on the simulation studies, an experimental model was built. The paper also presents selected experimental results.

Findings

Achieved results show that the proposed machine topology allows to eliminate the disadvantages mentioned in paper, i.e. necessary to introduce special areas inside the machine to limit magnetic flux leakage or its complicated construction.

Research limitations/implications

The obtained cogging torque values and back-emf pulsation are still relatively high. In the near future, some of known techniques for reducing these pulsations can be applied, including the use of magnetic wedges, changing shapes of rotor’s poles and/or skewing of permanent magnets.

Practical implications

The proposed solution can be used in wind turbines as a generator.

Originality/value

The paper presents an original design of a new construction of a hybrid-excited claw pole machine and also an excitation current influence on cogging torque and back-emf values.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 1999

Andrzej Demenko

The electromagnetic torque oscillations caused by saturation harmonics in a squirrel cage machine are analysed. Special attention is paid to the most important saturation harmonic…

Abstract

The electromagnetic torque oscillations caused by saturation harmonics in a squirrel cage machine are analysed. Special attention is paid to the most important saturation harmonic of alternating field that has three times as many poles as fundamental harmonic and three times its frequency. The operations of the machine as a motor and as a self‐excited generator have been investigated. The 2D finite element time‐stepping method has been applied to the analysis of a particular machine performance. The finite element equations are coupled with circuits equations which describe the winding connections. The skew of the rotor slots is taken into account.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Cezary Jedryczka, Wojciech Szelag and Zbigniew Jerry Piech

The purpose of this paper is to investigate advantages of multiphase permanent magnet synchronous motors (PMSM) with fractional slot concentrated windings (FSCW). The…

Abstract

Purpose

The purpose of this paper is to investigate advantages of multiphase permanent magnet synchronous motors (PMSM) with fractional slot concentrated windings (FSCW). The investigation is based on comparative analysis and assessment of FSCW PMSM wound as 3, 6, 9 and 12 phase machines suited for low speed applications.

Design/methodology/approach

The investigations are focussed on distortions of back electromotive (emf) and magnetomotive force (mmf) with the torque ripples and motors’ performance taken into account. The finite element models with the aid of customized computer code have been adopted for motor winding design and back emf, mmf and motor performance analyses.

Findings

The novel multiphase winding layouts were found to offer lower content of sub-harmonics in the mmf waveforms compared with the traditional three-phase machine designs. Moreover, the investigated multiphase machines exhibited higher average value of the electromagnetic torque, while the multiphase PMSM machines with FSCW were further characterized by significantly lower torque pulsations.

Originality/value

The analyses presented in this paper demonstrate that PMSM with FSCW are advantageous to their counterpart three-phase machines. Specifically, they offer higher performance and are more suitable to work with multiple drives supplying segmented winding system. This ability of using multi-drive supply for one motor offers flexibility and cost reduction while increasing fault tolerant power train system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2004

Dorota Stachowiak

This paper demonstrates how the 3D edge element method can be applied to the analysis of permanent magnet motors. The edge element method using the vector magnetic potential has…

Abstract

This paper demonstrates how the 3D edge element method can be applied to the analysis of permanent magnet motors. The edge element method using the vector magnetic potential has been used. Special attention has been paid to the analysis of systems with inhomogeneously magnetized permanent magnets. The magnets are not skewed and are mounted on a cylindrical laminated rotor. Calculations have been performed for different magnet widths and different distribution of the magnetization vector. Brushless motors with radially and inhomogeneously magnetized magnets have been compared.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

K. Wang, Z.Q. Zhu, G. Ombach and W. Chlebosz

The purpose of this paper is to investigate torque ripple and magnetic force on the teeth in interior permanent magnet (IPM) machines over a wide range of speed operation for…

Abstract

Purpose

The purpose of this paper is to investigate torque ripple and magnetic force on the teeth in interior permanent magnet (IPM) machines over a wide range of speed operation for electrical power steering (EPS) applications.

Design/methodology/approach

The flux-weakening capability of IPM machines has been analysed by finite element method considering the effect of cross-coupling between d- and q-axis current. The traditional method of analysing torque ripple is based on constant torque and flux-weakening region. However, the cross-coupling need to be considered when applying this technique to flux-weakening region. Meanwhile, the torque ripple with current amplitude and angle and with different speed in the flux-weakening region is also investigated. In addition, the magnetic force on the teeth due to the separated teeth with stator yoke is also investigated during the constant torque and flux-weakening region.

Findings

The torque ripple and magnetic force on teeth in IPM machine are dependent on current and current angle. Both the lowest torque ripple and magnetic force on teeth exist over the whole torque-speed region.

Research limitations/implications

The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple and magnetic force on teeth are not considered in this application. The 12-slot/10-pole IPM machine has been employed in this analysis, but this work can be continued to investigate different slot/pole number combinations.

Originality/value

This paper has analysed the torque ripple and magnetic force on the teeth in IPM machines for EPS application over a wide range of operation speed, which are the main cause of vibration and acoustic noise. The variation of torque ripple with current amplitude and angle as well as speed in the flux-weakening region is also investigated. In addition, the magnetic force on the teeth is also investigated over the whole torque-speed region.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades…

8480

Abstract

Purpose

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades power‐electronic technology has experienced a dramatic evolution. This second part of the paper aims to focus on a comprehensive survey of power converters and their associated control systems for high‐power wind energy generation applications.

Design/methodology/approach

Advanced control strategies, i.e. field‐oriented vector control and direct power control, are initially reviewed for wind‐turbine driven doubly fed induction generator (DFIG) systems. Various topologies of power converters, comprising back‐to‐back (BTB) connected two‐ and multi‐level voltage source converters (VSCs), BTB current source converters (CSCs) and matrix converters, are identified for high‐power wind‐turbine driven PMSG systems, with their respective features and challenges outlined. Finally, several control issues, viz., basic control targets, active damping control and sensorless control schemes, are elaborated for the machine‐ and grid‐side converters of PMSG wind generation systems.

Findings

For high‐power PMSG‐based wind turbines ranging from 3 MW to 5 MW, parallel‐connected 2‐level LV BTB VSCs are the most cost‐effective converter topology with mature commercial products, particularly for dual 3‐phase stator‐winding PMSG generation systems. For higher‐capacity wind‐turbine driven PMSGs rated from 5 MW to 10 MW, medium voltage multi‐level converters, such as 5‐level regenerative CHB, 3‐ and 4‐level FC BTB VSC, and 3‐level BTB VSC, are preferred. Among them, 3‐level BTB NPC topology is the favorite with well‐proven technology and industrial applications, which can also be extensively applicable with open‐end winding and dual stator‐winding PMSGs so as to create even higher voltage/power wind generation systems. Sensorless control algorithms based on fundamental voltages/currents are suggested to be employed in the basic VC/DPC schemes for enhancing the robustness in the entire PMSG‐based wind power generation system, due to that the problems related with electromagnetic interferences in the position signals and the failures in the mechanical encoders can be avoided.

Originality/value

This second part of the paper for the first time systematically reviews the latest state of arts with regard to power converters and their associated advanced control strategies for high‐power wind energy generation applications. It summarizes a variety of converter topologies with pros and cons highlighted for different power ratings of wind turbines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Siavash Sadeghi and Leila Parsa

The purpose of this paper is to minimize the torque pulsation in Halbach array permanent magnet synchronous machines (PMSMs).

Abstract

Purpose

The purpose of this paper is to minimize the torque pulsation in Halbach array permanent magnet synchronous machines (PMSMs).

Design/methodology/approach

Because of its specific structure, the cogging torque influences the main part of the torque pulsation in a Halbach array PMSM. In this paper, first it is shown that the conventional magnet skewing method does not have a significant effect on the torque pulsation in this motor, and then an improved skewing method with fewer skewing steps is proposed. In this method permanent magnet segments are placed sinusoidally, with two‐step skewing along the rotor. Generalization with different combinations of slots and poles is considered for a Halbach array PMSM.

Findings

Using a detailed finite element method (FEM) it was found that with the proposed technique the cogging torque factor is reduced to as low as 8 percent, while the average value of the torque is maintained near the machine nominal average torque.

Practical implications

Halbach array PMSMs are very good candidates for high dynamic performance applications such as aerospace applications due to their high acceleration and deceleration features. This technique also resolves the mechanical vibration and acoustic noise issues, which are caused by torque pulsation and significantly affect machine performance.

Originality/value

The originality of this paper lies in the FEM results. Since Halbach array PMSMs have a special structure it was shown that the conventional skewing method does not work well for this machine. The new proposed technique has a significant effect on the torque pulsation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 1998

Damijan Miljavec

The paper deals with the calculation and reduction of torque pulsation in synchronous reluctance motors (SRM). The analysis is based on finite element modeling and proposes a…

517

Abstract

The paper deals with the calculation and reduction of torque pulsation in synchronous reluctance motors (SRM). The analysis is based on finite element modeling and proposes a method of dynamic torque characteristic calculation. The mutual connection between static and dynamic torque characteristic is also established. Several aspects for reduction of torque pulsation are demonstrated and applied with success.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 17 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 August 2007

Andrzej Sikorski and Marek Korzeniewski

The aim of the paper is to conduct an analytical study of a new method of induction motor torque and flux direct control with nonlinear controllers.

Abstract

Purpose

The aim of the paper is to conduct an analytical study of a new method of induction motor torque and flux direct control with nonlinear controllers.

Design/methodology/approach

The method is based on the inverter state predictive determination in order to minimize the torque and flux errors.

Findings

The proposed method allows one to eliminate known DTC disadvantages, i.e. the hexagonal flux shape and nonsinusoidal current at a low motor speed, and also secures a decrease of torque and flux pulsation.

Practical implications

This new method enables a more precise reproduction of the motor torque and flux command signals, working with the same sampling frequency of the control processor as in the case of the standard DTC method. The decreased torque pulsations cause a decrease of the motor speed pulsation.

Originality/value

An innovative optimal control method is presented. The correctness of the initial assumptions as well as the expected final results have been verified in practice.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 163