Search results

1 – 8 of 8
Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 July 2022

G. Jaya Kumar, Tattukolla Kiran, N. Anand and Khalifa Al-Jabri

Most of the industrial buildings which are designed to moderate loads are constructed using light gauge cold-formed steel (CFS) sections. Residual mechanical properties of CFS…

Abstract

Purpose

Most of the industrial buildings which are designed to moderate loads are constructed using light gauge cold-formed steel (CFS) sections. Residual mechanical properties of CFS sections exposed to elevated temperature need to be investigated as it is necessary to predict the deterioration of elements to avoid failure of the structure or its elements. Also, it would be helpful to decide whether the structural elements need to be replaced or reused. The use of fire-resistant coatings in steel structures significantly reduces the cost of repairing structural elements and also the probability of collapse. This study investigates the effect of fire-resistant coating on post-fire residual mechanical properties of E350 steel grade.

Design/methodology/approach

In this study, an attempt has been made to evaluate the residual mechanical properties of E350 steel. A tensile coupon test was performed for the extracted specimens from the exposed CFS section to determine the mechanical properties. Four different fire-resistant coatings were selected and the sections were coated and heated as per ISO 834 fire temperature curve in the transient state for time durations of 30 minutes (821°C), 60 minutes (925°C), 90 minutes (986°C), and 120 minutes (1,029°C). After the exposure, all the coupon specimens were cooled by either ambient conditions (natural air) or water spraying before conducting the tension test on these specimens.

Findings

At 30 min exposure, the reduction in yield and ultimate strength of heated specimens was about 20 and 25% for air and water-cooled specimens compared with reference specimens. Specimens coated with vermiculite and perlite exhibited higher residual mechanical property up to 60 minutes than other coated specimens for both cooling conditions. Generally, water-cooled specimens had shown higher strength loss than air-cooled specimens. Specimens coated with vermiculite and perlite showed an excellent performance than other specimens coated with zinc and gypsum for all heating durations.

Originality/value

As CFS structures are widely used in construction practices, it is crucial to study the mechanical properties of CFS under post-fire conditions. This investigation provides detailed information about the physical and mechanical characteristics of E350 steel coated with different types of fire protection materials after exposure to elevated temperatures. An attempt has been made to improve the residual properties of CFS using the appropriate coatings. The outcome of the present study may enable the practicing engineers to select the appropriate coating for protecting and enhancing the service life of CFS structures under extreme fire conditions.

Details

Journal of Structural Fire Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 28 March 2024

Hans Voordijk, Seirgei Miller and Faridaddin Vahdatikhaki

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to…

Abstract

Purpose

Using real-time support systems may help operators in road construction to improve paving and compaction operations. Nowadays, these systems transform from descriptive to prescriptive systems. Prescriptive or operator guidance systems propose operators actionable compaction strategies and guidance, based on the data collected. It is investigated how these systems mediate the perceptions and actions of operators in road pavement practice.

Design/methodology/approach

A case study is conducted on the specific application of an operator guidance system in a road pavement project. In this case study, comprehensive information is presented regarding the process of converting input in the form of data from cameras and sensors into useful output. The ways in which the operator guidance systems translate data into actionable guidance for operators are analyzed from the technological mediation perspective.

Findings

Operator guidance systems mediate actions of operators physically, cognitively and contextually. These different types of action mediation are related to preconditions for successful implementation and use of these systems. Coercive interventions only succeed if there is widespread agreement among the operators. Persuasive interventions are most effective when collective and individual interests align. Contextual influence relates to designs of the operator guidance systems that determine human-technology interactions when using them.

Originality/value

This is the first study that analyzes the functioning of an operator guidance system using the technological mediation approach. It adds a new perspective on the interaction between this system and its users in road pavement practice.

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 25 April 2023

Ali Hashemi, Parsa Yazdanpanah Qaraei and Mostafa Shabanian

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer…

Abstract

Purpose

An excessive increase in temperature will reduce the lifespan and even burn the coil. The variety of materials in the structure of the electromagnet along with its multi-layer winding creates a complex and heterogeneous thermal structure. There are very few researches that are completely focused on the thermal analysis of electromagnets. The purpose of this paper is to provide an accurate, yet fast and simple method for the thermal analysis of cylindrical electromagnets in both transient and steady-state modes. For this purpose, a thermal equivalent circuit (TEC) is presented based on the nodding approach.

Design/methodology/approach

The results of TEC analysis of cylindrical electromagnet, for two orthogonal and orthocyclic winding coil technologies, were compared with the results of the thermal simulation in COMSOL. The authors also built a laboratory model of the cylindrical electromagnet, similar to those analyzed and simulated, and measured the temperature in different parts of it.

Findings

The comparison of the results obtained from different methods for the thermal analysis of the cylindrical electromagnet indicates that the proposed TEC has an error of less than 2%. The simplicity and high accuracy of the results are the most important advantages of the proposed TEC.

Originality/value

Comparing the information and results related to winding schemes, indicates that the orthogonal winding has less cost and weight due to the shorter length of the wire used. On the other hand, orthocyclic winding generates lower temperature and has more lifting force, and is simpler to implement. Therefore, in practice, orthocyclic winding technology is usually used.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2023

Mohammad Saleh Afsharkohan, Saman Dehrooyeh, Majid Sohrabian and Majid Vaseghi

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available…

Abstract

Purpose

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available market filaments do not contain any exact information report for printing settings, manufacturers are incapable of achieving desirable predefined print accuracy and mechanical properties for the final parts. The purpose of this study is to determine the importance of selecting suitable print parameters by understanding the intrinsic behavior of the material to achieve high-performance parts.

Design/methodology/approach

Two common commercial polylactic acid filaments were selected as the investigated samples. To study the specimens’ printing quality, an appropriate scaffold geometry as a delicate printing sample was printed according to a variety of speeds and nozzle temperatures, selected in the filament manufacturer’s proposed temperature range. Dimensional accuracy and qualitative surface roughness of the specimens made by one of the filaments were evaluated and the best processing parameters were selected. The scaffolds were fabricated again by both filaments according to the selected proper processing parameters. Material characterization tests were accomplished to study the reason for different filament behaviors in the printing process. Moreover, the correlations between the polymer structure, thermo-rheological behavior and printing parameters were denoted.

Findings

Compression tests revealed that precise printing of the characterized filament results in more accurate structure and subsequent improvement of the final printed sample elastic modulus.

Originality/value

The importance of material characterization to achieve desired properties for any purpose was emphasized. Obtained results from the rheological characterizations would help other users to benefit from the highest performance of their specific filament.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 June 2023

Mohamed Elmnefi and Waqas Al-Khazraji

One of the existing and commonly used solar energy harvesting devices is the parabolic trough solar collector (PTSC). Because of their ability to operate in low and medium…

Abstract

Purpose

One of the existing and commonly used solar energy harvesting devices is the parabolic trough solar collector (PTSC). Because of their ability to operate in low and medium temperatures, parabolic trough concentrators are widely used in power generation plants and industrial process heating applications. Therefore, the investigation of how different operating conditions affect these devices’ overall efficiency has received a great deal of attention in the recent decade. This study aims to enhance the thermal performance of the PTSC and reduce the system cost.

Design/methodology/approach

In the novel configuration, a noncirculated nanofluid absorbs solar radiation through a glass wall. The base fluid was synthetic oil (5W30), and the nanoparticles used were copper oxide. The heat captured is immediately absorbed by the water circulating inside the copper tube immersed in the nanofluid. ANSYS FLUENT 15.0 was used for carrying out computational fluid dynamics simulations for two models of single and triple copper tubes. The experimental results obtained from a test rig constructed for this purpose were compared with the numerical outcomes of the single copper tube model.

Findings

The findings of the simulation demonstrated that performance was superior for the single copper tube model over the triple copper tube model. The numerical findings of the single copper tube model were compared with the experimental results. The numerical and experimental results differed from 3.17% to 5.6%. Investigations were carried out to study the effects of varying the volumetric flow rate of (20, 40, 60 and 80 L/h) and water inlet temperatures of (300, 315 and 330 K) on the effectiveness and performance of the newly developed model. Additionally, two nanofluid volume fractions of 0.05% and 0.075% were used for investigating their effect on the performance of the novel configuration. According to the findings, the highest thermal efficiency of 55.31% was recorded at 0.075% concentration and 80 L/h volume flow rate.

Originality/value

In this study, a novel direct absorption solar collector configuration using a noncirculated nanofluid was designed to enhance the thermal efficiency of PTSC. This new approach makes it possible to boost the thermal performance of the PTSC and lower the system’s cost.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2022

Naveenkumar R., Shanmugam S. and Veerappan AR

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar…

Abstract

Purpose

The purpose of this paper is to understand the effect of basin water depth towards the cumulative distillate yield of the traditional and developed single basin double slope solar still (DSSS).

Design/methodology/approach

Modified single basin DSSS integrated with solar operated vacuum fan and external water cooled condenser was fabricated using aluminium material. During sunny season, experimental investigations have been performed in both conventional and modified DSSS at a basin water depth of 3, 6, 9 and 12 cm. Production rate and cumulative distillate yield obtained in traditional and developed DSSS at different water depths were compared and best water depth to attain the maximum productivity and cumulative distillate yield was found out.

Findings

Results indicated that both traditional and modified double SS produced maximum yield at the minimum water depth of 3 cm. Cumulative distillate yield of the developed SS was 16.39%, 18.86%, 15.22% and 17.07% higher than traditional at water depths of 3, 6, 9 and 12 cm, respectively. Cumulative distillate yield of the developed SS at 3 cm water depth was 73.17% higher than that of the traditional SS at 12 cm depth.

Originality/value

Performance evaluation of DSSS at various water depths by integrating the combined solar operated Vacuum fan and external Condenser.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 June 2023

Kazuo Nagano, Shijia Lyu and Naoshi Kakitsuba

Water vapor trapped in the boundary layer between a person and the clothing creates discomfort and other unpleasant sensations. When that water vapor is prevented from leaving the…

Abstract

Purpose

Water vapor trapped in the boundary layer between a person and the clothing creates discomfort and other unpleasant sensations. When that water vapor is prevented from leaving the clothing by external vapor barriers or impermeable layers, those psychophysical states are further exacerbated. One situation where that can be problematic is in office workplaces, and the seats that workers use for many hours every day. This study aims to evaluate the impact of different fabrics that are used for seat cover on water vapor retention.

Design/methodology/approach

The authors' method determines the behavior of contact surface humidity with a 50 kg sandbag on the seat to mimic the deformation of the seat materials due to the seated person's weight. Thus, the maximum increase in relative humidity (RH) after humidification of the seat surface (ΔRH-max), the time required to reach the maximum value of humidity (t-max) and the time constant (TC) after humidity starts to fall were derived.

Findings

Of the three different seat covers tested, the ΔRH-max of the wool were 7.3–8.8%, compared to 27.0–29.0% of the polyvinyl chloride (PVC), indicating more moisture absorption and transmission of the wool. The TC of the acrylic cover was 224–384 min compared to the 483–558 min of the PVC, which indicated a quick drying out feature of the acrylic.

Originality/value

The ΔRH-max, t-max and TC were all significantly correlated with the RH at the back thigh skin surface of the actual human participants.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 8 of 8