Search results

1 – 10 of 162
Article
Publication date: 30 March 2023

Flora Bougiatioti, Eleni Alexandrou and Miltiadis Katsaros

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal…

Abstract

Purpose

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal Insulation Code of 1981. The article focuses on existing, typical residences built after 1920, which are found mostly in suburban areas and settlements all around Greece. The purpose of the research is to evaluate the effect of simple bioclimatic interventions focused on the improvement of their diurnal, inter-seasonal and annual thermal performance.

Design/methodology/approach

The applied strategies include application of thermal insulation in the building shell and openings, passive solar systems for the heating period and shading and natural ventilation for the summer period. The effect of the strategies is analysed with the use of building energy analysis. The simulation method was selected because it provides the possibility of parametric analysis and comparisons for different proposals in different orientations.

Findings

The results show that the increased thermal mass of the construction is the most decisive parameter of the thermal behaviour throughout the year.

Research limitations/implications

The typical residences under investigation are often found in urban and/or suburban surroundings. These mostly refer to free-standing buildings situated, which, in many cases, do not have the disadvantages and limitations that the geometrical characteristics of densely built urban locations impose on incident solar radiation (e.g. overshadowing during the winter) and air circulation (e.g. reduce natural ventilation during the summer). Nevertheless, even in these cases, the surrounding built environment may also have relevant negative effects, which were not taken under consideration and could be included in further, future research that will include the effect of various orientations, as well as of neighbouring buildings.

Practical implications

Existing residences built prior to the first Thermal Insulation Code (1981) form an important part of the building stock. Consequently their energy upgrade could contribute to significant conventional energy savings for heating and cooling, along with the inter-seasonal improvement of interior thermal comfort conditions.

Social implications

The proposed interventions can improve thermal comfort conditions and lead to a reduction of energy consumption for heating and cooling, which is an important step against energy poverty and the on-going energy crisis.

Originality/value

The proposed interventions only involve the building envelope and are simple with relatively low cost.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 April 2024

Jhumana Akter, Mobasshira Islam and Shuvo Dip Datta

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This…

Abstract

Purpose

Determining the suitable material and accurate thickness of the thermal insulation layer used in exterior walls during the design phase of a building can be challenging. This study aims to determine suitable material and optimum thickness for the insulation layer considering both operational and embodied factors by a comprehensive assessment of the energy, economic and environmental (3E) parameters.

Design/methodology/approach

First, the energy model of an existing building was created by using Autodesk Revit software according to the as-built floor layout to evaluate the impact of five alternative insulating materials in varying thickness values. Second, using the results derived from the model, a thorough evaluation was conducted to ascertain the optimal insulation material and thickness through individual analysis of 3E factors, followed by a comprehensive analysis considering the three aforementioned factors simultaneously.

Findings

The findings indicated that polyurethane with 13 cm thickness, rockwool with 10 cm thickness and EPS with 20 cm thickness were the best states based on energy consumption, cost and environmental footprint, respectively. After completing the 3E investigation, the 15-cm-thick mineral wool insulation was presented as the ideal state.

Practical implications

This study explores how suitable material and thickness of insulating material can be determined in advance during the design phase of a building, which is a lot more accurate and cost-effective than applying insulating materials by assumed thickness in the construction phase.

Originality/value

To the best of the authors’ knowledge, this paper is unique in investigating the advantages of using thermally insulating materials in the context of a mosque structure, taking into account its distinctive attributes that deviate from those of typical buildings. Furthermore, there has been no prior analysis of the cost and sustainability implications of these materials concerning the characteristics of subtropical monsoon climate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2023

Visar Hoxha and Fuat Pallaska

The aim of this research is to investigate the impact of thermal, acoustic and HVAC upgrades on the perception of the quality of life among residential building occupants.

Abstract

Purpose

The aim of this research is to investigate the impact of thermal, acoustic and HVAC upgrades on the perception of the quality of life among residential building occupants.

Design/methodology/approach

The present study used a quantitative research approach, utilizing a questionnaire as the research instrument. A survey was conducted with 1,119 residential apartment building occupants in Prishtina, Kosovo, using a stratified random sampling method for selection of participants.

Findings

The present study used quantitative research with a questionnaire as the research instrument. The survey was conducted with 1,119 residential apartment building occupants in Prishtina, Kosovo, using stratified random sampling. The study found that thermal retrofits, acoustic retrofits and HVAC upgrades as a whole model affect the perception of the quality of life of residential building occupants in Prishtina, Kosovo. However, the study found that not all dimensions of the constructed research model (thermal, acoustic and HVAC) affect the perception of the quality of life of residential building occupants. Specifically, thermal retrofitting seems to strongly influence the perception of quality of life, while HVAC upgrades do not seem to have an impact on the quality of life of occupants. Finally, acoustic retrofits also influence the perception of the quality of life, although not to the same degree as thermal retrofitting.

Research limitations/implications

The present study contributes to understanding the role that thermal retrofits, acoustic retrofits and HVAC upgrades play in the perception of quality of life by building occupants in an understudied region with a booming real estate sector such as Kosovo. The study also highlights the need for further analysis to understand why HVAC upgrades do not seem to influence the perception of quality of life by residential building occupants in Kosovo.

Originality/value

The present study is the first to quantify the impact of thermal, acoustic and HVAC upgrades on the perception of the quality of life of residential building occupants in Prishtina, Kosovo.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 15 March 2024

Obed Ofori Yemoh, Richard Opoku, Gabriel Takyi, Ernest Kwadwo Adomako, Felix Uba and George Obeng

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat…

Abstract

Purpose

This study has assessed the thermal performance of locally fabricated bio-based building envelopes made of coconut and corn husk composite bricks to reduce building wall heat transmission load and energy consumption towards green building adaptation.

Design/methodology/approach

Samples of coconut fiber (coir) and corn husk fiber bricks were fabricated and tested for their thermophysical properties using the Transient Plane Source (TPS) 2500s instrument. A simulation was conducted using Dynamic Energy Response of Building - Lunds Tekniska Hogskola (DEROB-LTH) to determine indoor temperature variation over 24 h. The time lag and decrement factor, two important parameters in evaluating building envelopes, were also determined.

Findings

The time lag of the bio-based composite building envelope was found to be in the range of 4.2–4.6 h for 100 mm thickness block and 10.64–11.5 h for 200 mm thickness block. The decrement factor was also determined to be in the range of 0.87–0.88. The bio-based composite building envelopes were able to maintain the indoor temperature of the model from 25.4 to 27.4 °C, providing a closely stable indoor thermal comfort despite varying outdoor temperatures. The temperature variation in 24 h, was very stable for about 8 h before a degree increment, providing a comfortable indoor temperature for occupants and the need not to rely on air conditions and other mechanical forms of cooling. Potential energy savings also peaked at 529.14 kWh per year.

Practical implications

The findings of this study present opportunities to building developers and engineers in terms of selecting vernacular materials for building envelopes towards green building adaptation, energy savings, reduced construction costs and job creation.

Originality/value

This study presents for the first time, time lag and decrement factor for bio-based composite building envelopes for green building adaptation in hot climates, as found in Ghana.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 6 September 2022

Feng Zhou, Zixuan Wang and Yuxiang Zhao

The purpose of this paper is to study the pipe-type electromagnetic induction heating device under power frequency condition.

46

Abstract

Purpose

The purpose of this paper is to study the pipe-type electromagnetic induction heating device under power frequency condition.

Design/methodology/approach

To reduce eddy current loss and improve heating efficiency, the structure of a pipe-type power-frequency electromagnetic heating device was optimized. Based on the maximum load flow formula, a parallel excitation winding structure is designed, and the distribution of electromagnetic field under four different powers is analyzed by simulation. Four heating modes were proposed according to the structure of diversion ring, inner wall and outer wall. Two heating modes with better heating effect were obtained by comprehensively considering the factors such as magnetic field distribution, thermal power and energy consumption.

Findings

The double-wall structure of the pipe-type electromagnetic heating device can make the heat source distribution more uniform, and the use of power-frequency power supply can increase security, the installation of diversion ring can make the heating more sufficient and the heating efficiency of the two heating methods selected according to the structural performance is more than 90%.

Originality/value

In view of the medium or high frequency of pipe-type electromagnetic heating device, it is necessary to configure high power electronic frequency conversion drive system, and eddy current can only be produced on the tube wall, resulting in uneven distribution of heat sources. A pipe-type power-frequency electromagnetic heating device with double-wall structure was proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 October 2023

Rabee Reffat and Julia Adel

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Abstract

Purpose

This purpose of this paper is to address the problem of reducing energy consumption in existing buildings using advanced noninvasive interventions (NVIs).

Design/methodology/approach

The study methodology involves systematically developing and testing 18 different NVIs in six categories (glazing types, window films, external shading devices, automated internal shades, lighting systems and nanopainting) to identify the most effective individual NVIs. The impact of each individual NVI was examined on an exemplary university educational building in a hot climate zone in Egypt using a computational energy simulation tool, and the results were used to develop 39 combination scenarios of dual, triple and quadruple combinations of NVIs.

Findings

The optimal 10 combination scenarios of NVIs were determined based on achieving the highest percentages of energy reduction. The optimal percentage of energy reduction is 47.1%, and it was obtained from a combination of nanowindow film, nanopainting, LED lighting and horizontal louver external. The study found that appropriate mixture of NVIs is the most key factor in achieving the highest percentages of energy reduction.

Practical implications

These results have important implications for optimizing energy savings in existing buildings. The results can guide architects, owners and policymakers in selecting the most appropriate interventions in existing buildings to achieve the optimal reduction in energy consumption.

Originality/value

The novelty of this research unfolds in two significant ways: first, through the exploration of the potential effects arising from the integration of advanced NVIs into existing building facades. Second, it lies in the systematic development of a series of scenarios that amalgamate these NVIs, thereby pinpointing the most efficient strategies to optimize energy savings, all without necessitating any disruptive alterations to the existing building structure. These combination scenarios encompass the incorporation of both passive and active NVIs. The potential application of these diverse scenarios to a real-life case study is presented to underscore the substantial impact that these advanced NVIs can have on the energy performance of the building.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 12 January 2024

Amanpreet Kaur Kharbanda, Kamal Raj Dasarathan, S.K. Sinha, T. Senthil Kumar and B. Senthil Kumar

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study…

43

Abstract

Purpose

Through this study, four different types of woven fabric structures were created by using cotton/banana blends with a 70:30 ratio by varying the weaving specifications. This study aims to investigate the comfort and mechanical properties of these woven materials.

Design/methodology/approach

Taguchi L16 experimental design (5 factors and 4 levels) with response surface methodology tool was used to optimize mechanical and comfort characteristics. The yarn samples used in this study are cotton/banana with a blend ratio of 70:30. Fabric type (A), grams per square metre (GSM; B), yarn count (C), fabric thickness (D) and cloth cover factor (E) are the chosen process characteristics.

Findings

The highest tensile strength and tearing strength of the cotton/banana blended fabric samples were obtained as 326.3 N and 90.3 k.gf/cm, respectively. Similarly, the highest thermal conductivity and overall moisture management capacity values were found to be 0.6628 and 3.06 W/mK X10−4, respectively. The optimized process parameters for obtaining maximum mechanical properties were using canvas fabric structure, 182 GSM, 36s Ne yarn count, 0.48 mm fabric thickness and 23.5 cloth cover factor. Similarly, the optimized process parameters for obtaining maximum comfort properties were achieved using a twill fabric structure, 182 GSM, 32s Ne yarn count, 0.4 mm fabric thickness and 23 cloth cover factor.

Originality/value

In contrast to synthetic fabrics, banana fibre and its blended materials are significant ecological solutions for apparel and functional clothing. Products made from banana fibre are a sustainable and green alternative to conventional fabrics. Banana fibre obtained from the pseudostem of the plant has an appearance similar to ramie and bamboo fibres. Numerous studies showed that banana fibre could absorb significant moisture and be spun into yarn through ring and rotor spinning technology. On the other hand, this fibre can be easily combined with cotton, jute, wool and synthetic fibre. The present utilization of pseudostem of banana plant fibre is very minimal. This type of research improves the usability of bananas their blended fabrics as apparel and functional wear.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 11 December 2023

Hirou Karimi, Mohammad Anvar Adibhesami, Maryam Ghasemi, Borhan Sepehri and Bonin Mahdavi Estalkhsar

This study was conducted to investigate the impact of indoor environmental quality (IEQ) and internal design on the performance of students in university dormitories in Tehran and…

Abstract

Purpose

This study was conducted to investigate the impact of indoor environmental quality (IEQ) and internal design on the performance of students in university dormitories in Tehran and North Cyprus.

Design/methodology/approach

Using a survey questionnaire, 298 students living in student dormitories in Tehran and North Cyprus were surveyed for data collection.

Findings

Research has shown that the academic performance and well-being of students are heavily impacted by factors related to IEQ and internal design. The study conducted in Tehran and North Cyprus has identified the most effective components of IEQ and internal design for student dormitories. The study suggests that proper ventilation, furniture design, temperature control and lighting design are key factors that significantly affect IEQ and internal design. Control and lighting design are key factors that significantly affect IEQ and internal design.

Originality/value

Originality: The study utilizes a comparative study designed to analyze the differences and similarities between the two locations.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 18 April 2023

Sundus Shareef, Emad S. Mushtaha, Saleh Abu Dabous and Imad Alsyouf

This paper investigates thermal mass performance (TMP) in hot climates. The impact of using precast concrete (PC) as a core envelope with different insulation materials has been…

Abstract

Purpose

This paper investigates thermal mass performance (TMP) in hot climates. The impact of using precast concrete (PC) as a core envelope with different insulation materials has been studied. The aim is to find the effect of building mass with different weights on indoor energy consumption, specifically cooling load in hot climates.

Design/methodology/approach

This research adopted a case study and simulation methods to find out the efficiency of different mass performances in hot and humid climate conditions. Different scenarios of light, moderate and heavyweight mass using PC have been developed and simulated. The impact of these scenarios on indoor cooling load has been investigated using the integrated environment solution-virtual environment (IES-VE) software.

Findings

The results showed that adopting a moderate weight mass of two PC sheets and a cavity layer in between can reduce indoor air temperature by 1.17 °C; however, this type of mass may increase the cooling demand. On the other hand, it has been proven that adopting a heavyweight mass for building envelopes and increasing the insulation material has a significant impact on reducing the cooling load. Using a PC Sandwich panel and increasing the insulation material layers for external walls and thickness by 50 mm will reduce the cooling load by 15.8%. Therefore, the heavyweight mass is more efficient compared to lightweight and moderate mass in hot, humid climate areas such as the UAE, in spite of the positive indoor TMP that can be provided by the lightweight mass in reducing the indoor air temperature in the summer season.

Originality/value

This research contributes to the thermal mass concept as one of these strategies that have recently been adopted to optimize the thermal performance of buildings and developments. Efficient TMP can have a massive impact on reducing energy consumption. However, less work has investigated TMP in hot and humid climate conditions. Furthermore, the impact of the PC on indoor thermal performance within hot climate areas has not been studied yet. The findings of this study on TMP in the summer season can be generated in all hot climate zones, and investigating the TMP in other seasons can be extended in future studies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 162