Search results

1 – 10 of 314
Open Access
Article
Publication date: 2 May 2019

Minyoung Kwon, Hilde Remøy and Andy Van Den Dobbelsteen

This paper highlights the importance of user satisfaction in office renovation. A user-focussed renovation approach can enhance user satisfaction in offices and their functional…

4748

Abstract

Purpose

This paper highlights the importance of user satisfaction in office renovation. A user-focussed renovation approach can enhance user satisfaction in offices and their functional quality while meeting energy performance goals. The purpose of this paper is to investigate users’ needs and the physical and psychological factors affecting user satisfaction, as input to office renovation projects.

Design/methodology/approach

The selected articles are collected from Scopus, ScienceDirect and Google Scholar. Searching was limited to the main key terms of office, work environment, and user satisfaction and comfort. The important factors were searched through empirical-based international literature mainly. Based hereupon, a guide will be developed for the analysis and evaluation of user satisfaction in office renovations.

Findings

From a comprehensive overview, the findings present ten main factors to increase user satisfaction in office renovation. These are associated with physical and psychological satisfaction and comfort. In addition, the influential factors were categorised into three levels based on needs theories to organise the hierarchy of priorities.

Practical implications

This research adds to the body of knowledge about which factors are important for user satisfaction, based on what previous research has found in that field. This is important to improve the sustainability in use.

Originality/value

User satisfaction is often studied through separate aspects: health and indoor climate vs functionality and productivity. This paper examines overall user satisfaction of workplaces by integrating the perspectives of physical and psychological conditions, and by providing insight into the priority of satisfaction factors.

Details

Property Management, vol. 37 no. 4
Type: Research Article
ISSN: 0263-7472

Keywords

Open Access
Article
Publication date: 2 February 2023

Ulrika Uotila and Arto Saari

Poor indoor air quality (IAQ) contributing to occupants’ health symptoms is a universal, typically ventilation-related, problem in schools. In cold climates, low-cost strategies…

1011

Abstract

Purpose

Poor indoor air quality (IAQ) contributing to occupants’ health symptoms is a universal, typically ventilation-related, problem in schools. In cold climates, low-cost strategies to improve IAQ in a naturally ventilated school are rare since conventional methods, such as window opening, are often inappropriate. This paper aims to present an investigation of strategies to relieve health symptoms among school occupants in naturally ventilated school in Finland.

Design/methodology/approach

A case study approach is adopted to thoroughly investigate the process of generating the alternatives of ventilation redesign in a naturally ventilated school where there have been complaints of health symptoms. First, the potential sources of the occupants’ symptoms are identified. Then, the strategies aiming to reduce the symptoms are compared and evaluated.

Findings

In a naturally ventilated school, health symptoms that are significantly caused by insufficient ventilation can be potentially reduced by implementing a supply and exhaust ventilation system. Alternatively, it is possible to retain the natural ventilation with reduced number of occupants. The selected strategy would depend considerably on the desired number of users, the budget and the possibilities to combine the redesign of ventilation with other refurbishment actions. Furthermore, the risk of poorer indoor air caused by the refurbishment actions must also be addressed and considered.

Practical implications

This study may assist municipal authorities and school directors in decisions concerning improvement of classroom IAQ and elimination of building-related symptoms. This research provides economic aspects of alternative strategies and points out the risks related to major refurbishment actions.

Originality/value

Since this study presents a set of features related to indoor air that contribute to occupants’ health as well as matters to be considered when aiming to decrease occupants’ symptoms, it may be of assistance to municipal authorities and practitioners in providing a healthier indoor environment for pupils and teachers.

Details

Facilities, vol. 41 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 6 June 2023

Yunjia Wang and Qianli Zhang

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of…

Abstract

Purpose

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.

Design/methodology/approach

The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling, on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.

Findings

The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling, which will trigger hydrothermal erosion in case of sufficient moisture inflows, leading to the thawing settlement or the cracking of the subgrade, etc. The heat output of soil will be hindered the most in case of July filling, in which case the sinking and the distortion of the freezing front is found to be the most severe, which the recovery of the permafrost temperature field, the slowest, constituting the most unfavorable working condition. The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface, the subgrade height, the subgrade width and the volumetric thermal capacity of filler, while decreases with the increase of the thermal conductivity of filler. Therefore, the filler chose for engineering project shall be of small volumetric thermal capacity, low initial temperature and high thermal conductivity whenever possible.

Originality/value

The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 9 November 2022

Guoquan Xu, Shiwei Feng, Shucen Guo and Xiaolan Ye

China has proposed two-stage goals of carbon peaking by 2030 and carbon neutralization by 2060. The carbon emission reduction effect of the power industry, especially the thermal…

Abstract

Purpose

China has proposed two-stage goals of carbon peaking by 2030 and carbon neutralization by 2060. The carbon emission reduction effect of the power industry, especially the thermal power industry, will directly affect the progress of the goal. This paper aims to reveal the spatial-temporal characteristics and influencing factors of carbon emission efficiency of the thermal power industry and proposes policy suggestions for realizing China’s carbon peak and carbon neutralization goals.

Design/methodology/approach

This paper evaluates and compares the carbon emission efficiency of the thermal power industry in 29 provinces and regions in China from 2014 to 2019 based on the three-stage slacks-based measure (SBM) of efficiency in data envelopment analysis (DEA) model of undesired output, excluding the influence of environmental factors and random errors.

Findings

Empirical results show that during the sample period, the carbon emission efficiency of China’s thermal power industry shows a fluctuating upward trend, and the carbon emission efficiency varies greatly among the provincial regions. The carbon emission efficiency of the interregional thermal power industry presents a pattern of “eastern > central > western,” which is consistent with the level of regional economic development. Environmental factors such as economic level and environmental regulation level are conducive to the improvement of carbon emission efficiency of the thermal power industry, but the proportion of thermal power generation and industrial structure is the opposite.

Originality/value

This paper adopts the three-stage SBM–DEA model of undesired output and takes CO2 as the undesired output to reveal the spatial-temporal characteristics and influencing factors of carbon emission efficiency in China’s thermal power industry. The results provide a more comprehensive perspective for regional comparative evaluation and influencing factors of carbon emission efficiency in China’s thermal power industry.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 2 November 2023

H.A. Kumara Swamy, Sankar Mani, N. Keerthi Reddy and Younghae Do

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of…

Abstract

Purpose

One of the major challenges in the design of thermal equipment is to minimize the entropy production and enhance the thermal dissipation rate for improving energy efficiency of the devices. In several industrial applications, the structure of thermal device is cylindrical shape. In this regard, this paper aims to explore the impact of isothermal cylindrical solid block on nanofluid (Ag – H2O) convective flow and entropy generation in a cylindrical annular chamber subjected to different thermal conditions. Furthermore, the present study also addresses the structural impact of cylindrical solid block placed at the center of annular domain.

Design/methodology/approach

The alternating direction implicit and successive over relaxation techniques are used in the current investigation to solve the coupled partial differential equations. Furthermore, estimation of average Nusselt number and total entropy generation involves integration and is achieved by Simpson and Trapezoidal’s rules, respectively. Mesh independence checks have been carried out to ensure the accuracy of numerical results.

Findings

Computations have been performed to analyze the simultaneous multiple influences, such as different thermal conditions, size and aspect ratio of the hot obstacle, Rayleigh number and nanoparticle shape on buoyancy-driven nanoliquid movement, heat dissipation, irreversibility distribution, cup-mixing temperature and performance evaluation criteria in an annular chamber. The computational results reveal that the nanoparticle shape and obstacle size produce conducive situation for increasing system’s thermal efficiency. Furthermore, utilization of nonspherical shaped nanoparticles enhances the heat transfer rate with minimum entropy generation in the enclosure. Also, greater performance evaluation criteria has been noticed for larger obstacle for both uniform and nonuniform heating.

Research limitations/implications

The current numerical investigation can be extended to further explore the thermal performance with different positions of solid obstacle, inclination angles, by applying Lorentz force, internal heat generation and so on numerically or experimentally.

Originality/value

A pioneering numerical investigation on the structural influence of hot solid block on the convective nanofluid flow, energy transport and entropy production in an annular space has been analyzed. The results in the present study are novel, related to various modern industrial applications. These results could be used as a firsthand information for the design engineers to obtain highly efficient thermal systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11594

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 8 March 2021

Ga Yoon Choi, Hwan Sung Kim, Hyungkyoo Kim and Jae Seung Lee

In cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies…

3195

Abstract

Purpose

In cities with high density, heat is often trapped between buildings which increases the frequency and intensity of heat events. Researchers have focused on developing strategies to mitigate the negative impacts of heat in cities. Adopting green infrastructure and cooling pavements are some of the many ways to promote thermal comfort against heat. The purpose of this study is to improve microclimate conditions and thermal comfort levels in high-density living conditions in Seoul, South Korea.

Design/methodology/approach

This study compares six design alternatives of an apartment complex with different paving and planting systems. It also examines the thermal outcome of the alternatives under normal and extreme heat conditions to suggest strategies to secure acceptable thermal comfort levels for the inhabitants. Each alternative is analyzed using ENVI-met, a software program that simulates microclimate conditions and thermal comfort features based on relationships among buildings, vegetation and pavements.

Findings

The results indicate that grass paving was more effective than stone paving in lowering air temperature and improving thermal comfort at the near-surface level. Coniferous trees were found to be more effective than broadleaf trees in reducing temperature. Thermal comfort levels were most improved when coniferous trees were planted in paired settings.

Practical implications

Landscape elements show promise for the improvement of thermal conditions because it is much easier to redesign landscape elements, such as paving or planting, than to change fixed urban elements like buildings and roads. The results identified the potential of landscape design for improving microclimate and thermal comfort in urban residential complexes.

Originality/value

The results contribute to the literature by examining the effect of tree species and layout on thermal comfort levels, which has been rarely investigated in previous studies.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 5 April 2023

Shan Chen, Yuandi Wang, Hongping Du and Zhiyu Cui

Although the tasks of managing carbon peaks and achieving carbon neutrality in China are arduous, they are also of great significance, which highlights China’s determination and…

Abstract

Purpose

Although the tasks of managing carbon peaks and achieving carbon neutrality in China are arduous, they are also of great significance, which highlights China’s determination and courage in dealing with climate change. The power industry is not only a major source of carbon emissions but also an important area for carbon emission reduction. Thus, against the backdrop of carbon neutrality, understanding the development status of China’s power industry guided by the carbon neutrality background is important because it largely determines the completeness of China’s carbon reduction promises to the world. This study aims to review China’s achievements in carbon reduction in the electric industry, its causes and future policy highlights.

Design/methodology/approach

The methods used in this study include descriptive analyses based on official statistics, government documents and reports.

Findings

The research results show that, after years of development, the power industry has achieved positive results in low-carbon provisions and in the electrification of consumption, and carbon emission intensity has continued to decline. Policy initiatives play a key role in this process, including, but not limited to, technology innovations, low-carbon power replacement and supported policies for low-carbon transformation toward low-carbon economies.

Originality/value

This study provides a full picture of China’s power industry against the backdrop of low-carbon development, which could be used as a benchmark for other countries engaging in the same processes. Moreover, a careful review of China’s development status may offer profound implications for policymaking both for China and for other governments across the globe.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 24 October 2022

Babak Lotfi and Bengt Ake Sunden

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice…

1172

Abstract

Purpose

This study aims to computational numerical simulations to clarify and explore the influences of periodic cellular lattice (PCL) morphological parameters – such as lattice structure topology (simple cubic, body-centered cubic, z-reinforced body-centered cubic [BCCZ], face-centered cubic and z-reinforced face-centered cubic [FCCZ] lattice structures) and porosity value ( ) – on the thermal-hydraulic characteristics of the novel trussed fin-and-elliptical tube heat exchanger (FETHX), which has led to a deeper understanding of the superior heat transfer enhancement ability of the PCL structure.

Design/methodology/approach

A three-dimensional computational fluid dynamics (CFD) model is proposed in this paper to provide better understanding of the fluid flow and heat transfer behavior of the PCL structures in the trussed FETHXs associated with different structure topologies and high-porosities. The flow governing equations of the trussed FETHX are solved by the CFD software ANSYS CFX® and use the Menter SST turbulence model to accurately predict flow characteristics in the fluid flow region.

Findings

The thermal-hydraulic performance benchmarks analysis – such as field synergy performance and performance evaluation criteria – conducted during this research successfully identified demonstrates that if the high porosity of all PCL structures decrease to 92%, the best thermal-hydraulic performance is provided. Overall, according to the obtained outcomes, the trussed FETHX with the advantages of using BCCZ lattice structure at 92% porosity presents good thermal-hydraulic performance enhancement among all the investigated PCL structures.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first in the literature that provides thorough thermal-hydraulic characteristics of a novel trussed FETHX with high-porosity PCL structures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 25 June 2019

Phan Anh Nguyen, Regina Bokel and Andy van den Dobbelsteen

Refurbishing houses is considered a key measure to improve the energy efficiency of the built environment. However, little is known about the implementation and outcome of housing…

2882

Abstract

Purpose

Refurbishing houses is considered a key measure to improve the energy efficiency of the built environment. However, little is known about the implementation and outcome of housing renovation for energy upgrades in the Vietnamese practice. The purpose of this paper is to investigate the energy performance of the current housing stock in Vietnam and the potential to reduce energy use in households.

Design/methodology/approach

The paper is based on a survey with 153 respondents in three major climatic regions of Vietnam. The survey focusses on building characteristics, environmental performance, energy performance and refurbishment activities. Data collected from the survey were statistically analysed to give insight into the current performance of the housing stock and its energy saving potential.

Findings

This paper concludes that building design and construction, particularly the building envelope, have a significant influence on the occupants’ comfort. However, the energy consumption in houses is not statistically associated with building design and indoor environment. It is suggested that financial status and occupants’ behaviour currently have a strong influence on the household energy use. The survey also showed that refurbishment improves the housing performance, especially if improving the indoor environment was one of the drivers.

Originality/value

There are very few studies on energy use in households in Vietnam, especially with regards to actual energy consumption. This paper brings insights into the actual energy consumption and reveals the “performance gap” in Vietnamese housing stock.

Details

Smart and Sustainable Built Environment, vol. 8 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

Access

Only Open Access

Year

All dates (314)

Content type

Article (314)
1 – 10 of 314